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CHAPTER 1: General Introduction 

 

DISSERTATION MOTIVATION AND OVERVIEW 

A deeper understanding of the cell membrane organization can ultimately lead to a 

new or improved therapeutics target. For example, the majority of the drugs for various 

ailments are targeted towards the cell membrane and its components. A class of membrane 

proteins called receptors transmits signals across the cell membrane and is considered 

fundamental to the functioning of an organism. Abnormality in transmitting signals during 

cell signaling events can lead to a variety of pathological conditions. A class of receptors 

called integrins is vital for many cellular processes that include adhesion, motility, growth 

and survival. Microclustering of integrins have been shown to mediate many cell signaling 

processes. Aberrant integrin mediated cell signaling has been implicated in various cancer 

metastases. Current methods are capable of measuring integrin microclustering but have not 

been utilized in relating the cellular components that affects the integrin microclustering. 

In order to better understand the cell signaling process, non-invasive methods to 

measure the integrin microclustering and examine the factors affecting the dynamics of these 

clusters are needed. This dissertation is focused on the development of non-invasive 

analytical tools to investigate the role of cytoplasmic proteins and cholesterol on the 

nanoscale dynamic localization of integrins using a technique called FRET, fluorescence 

resonance energy transfer. FRET is used to detect the proximity of molecules at nanometer 

distances (1-10 nm) and can be applied in diverse ways with various microscope 
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configurations. FRET images obtained with such setups can be used to quantify the 

interactions between biomolecules within cells.  

The general introduction chapter covers a broad background on topics that would 

place the following chapters in perspective. This chapter encompasses background topics like 

the composition and functions of the cell membrane, the importance of cell signaling, how 

some of the membrane proteins called receptors participate in cell signaling, description of a 

class of receptors called integrins, and clustering of integrins. The chapter also includes a 

literature survey of measuring protein-protein interactions using FRET. Additionally, a 

rigorous discussion on the theory behind FRET, the details of the instrumentation as well as 

various FRET equations and parameters needed when designing experiments are also 

included. Finally, the chapter concludes with a dissertation overview. 

  Cell signaling cascades recruit a many cytoplasmic proteins in the process of cellular 

communication. A better understanding of the interaction of these cytoplasmic proteins with 

integrins can provide essential cues about cell signaling. In this regard, one of the first steps 

would be to identify the cytoplasmic proteins that affect the integrins dynamics. The second 

chapter focuses on the work involved in the coupling of a biotechnology tool with FRET 

microscopy technique to identify key cytoplasmic proteins affecting the integrin 

microclustering. The chapter discusses the changes in integrins microclustering under 

reduced expression of several key cytoplasmic proteins. The details of the FRET technique 

used to measure integrin microclustering and the biotechnology technique used to reduce the 

expression of cytoplasmic proteins are presented in this chapter. Concomitant studies 

validating the reduced expression levels of cytoplasmic proteins are also included.  
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Cholesterol is a small lipid molecule that intercalates between the fatty acyl chains of 

the cell membrane lipid bilayer. It is known to maintain the membrane structure and regulate 

the membrane fluidity. Previous studies have shown intramembranous hydrophobic 

interactions between cholesterol and other membrane proteins. While chapter two identifies 

key cytoplasmic proteins affecting integrin microclustering, the third chapter focuses on 

investigating the role of cholesterol in the microclustering of integrins. Modulation of 

membrane cholesterol levels using cyclodextrins as well as the validation of changes in 

cholesterol levels using a fluorometric assay are presented in this chapter. Additionally, the 

measurement of subsequent changes in integrin microclustering upon cholesterol removal is 

discussed in this chapter. Further insights into the integrins dynamics in light of the altered 

membrane lipid diffusion upon alteration in the cholesterol levels is presented in this chapter. 

Lastly, reversibility of the process upon restoration of membrane cholesterol levels is 

discussed.  

Chapter four provides general conclusions to the preceding chapters as well as the 

future prospects of the FRET based receptor microclustering measurements. Although 

chapter 2 and 3 are related to each other, they aim at probing the roles of two different cell 

components (cytoplasmic proteins and cholesterol) on the integrin microclustering. 

Therefore, both chapter 2 and chapter 3 have been or intended to be published separately in 

scientific, peer reviewed journals.  

Besides the aforementioned four chapters, there are two additional projects that are 

not included in this dissertation. The research that goes into these two projects was 

performed at Iowa State University under the supervision of Prof. Marc D. Porter and Dr. 

Robert J. Lipert during fall-2003 to fall-2006. The first project involves the development of a 
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separation method, using reverse phase High Performance Liquid Chromatography (HPLC) 

and Size Exclusion Chromatography, to rapidly pre-screen plant extracts of Echinacea and 

Hypericum for drug-like compounds. The second project involved synthesizing novel 

Raman-active nanoconjugates made of magnetic and gold nanoparticles to improvise analysis 

times in immunoassays. These projects could not be included in my dissertation as per Iowa 

State University policies. 

 

LITERATURE REVIEW 

Cell Membrane Organization 

Cell Membrane: Each one of the 100 trillion cells in our body has a 5-10 nm thick 

boundary enclosing and compartmentalizing both the entire cell and the organelles within 

them. In the absence of this frontier, human life would be impossible. In fact, defects in the 

boundary have been implicated in a host of diseases such as sickle cell anemia, muscular 

dystrophy, retinal degeneration and lysosomal storage disorder.
1-3

 This frontier is a dynamic 

fluid-like boundary with its components continuously moving around. The basic structure of 

Figure 1. Structure of lipid bilayer. Blue circles represents water loving phospholipid groups 

and the wiggly tails represents hydrocarbon chains. 
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the membrane comprises the phospholipid bilayer, made up from a hydrophilic phosphate 

headgroups and two hydrophobic lipid tails (Figure 1).  

 When phospholipids are exposed to water, the hydrophobic tails from one 

phospholipid are pushed towards the tail from another phospholipid forming a hydrophobic 

inner core and a hydrophilic exterior. The membrane is further stabilized by hydrogen bonds, 

electrostatic attractions and van der Waals forces.  

 

 

 In addition to phospholipids, the cell membrane is composed of proteins, sterols and 

small molecules as depicted in Figure 2. The relative amounts of these components vary from 

cell to cell dictating the diverse cellular functions. The proteins in the membrane are 

extremely important in carrying out various functions such as glucose uptake, channeling 

ions, immune response, anchoring cytoskeletal filaments and cell signaling. 

Figure 2. Diagram of the cell membrane. (adapted from Nature Publishing Group)  
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Cell Signaling. Signaling in cells is vital for their survival, growth, proliferation, 

differentiation and other basic functions.
4-6

 Errors in processing the signaling events could 

result in various pathological conditions including cancer metastasis.
7
 During signal 

transduction, stimuli are intercepted by cell membrane proteins called receptors that relay the 

information into and out of the cell by engaging a cascading complex network of signaling 

partners such as kinases, Ras, G proteins etc.. 
6, 8-10

 Signal transduction is carried out by the 

receptors, such as integrins, through three primary mechanisms (a) binding of the 

extracellular ligands to the extracellular domain of the receptors causing conformational 

changes that is relayed into the cell interior, known as outside-in-signaling; (b) intracellular 

binding of proteins or other biomolecules to the cytoplasmic domain of the receptor, referred 

as inside-out signaling; and (c) clustering of receptors within the plasma membrane. Receptor 

clustering has been involved in many vital processes such as immunological synapse 

formation
11

,  actin cytoskeleton regulation
12

  and leukocyte regulation
13

. 

Integrin Receptors. One class of receptors that are pivotal to many cell signaling 

events are integrins, which are heterodimeric cell membrane receptors composed of one α 

subunit noncovalently associated with one β subunit.
14, 15

 They have been found to regulate 

adhesion of cells to components of the extracellular matrix and mediate signaling through 

both the cytoplasm and the extracellular matrix.
4
 Among other functions, integrins control 

aspects of cell migration, developmental events, angiogenesis and have been implicated in 

tumorigenesis, tumor progression, and metastasis.
16-19

 Both α and β subunits comprise a large 

extracellular domain and a short cytoplasmic domain.
14, 15

 Several forms of each subunit are 

known to exist, and the combination of subunits controls the receptor’s binding specificity 

and signaling properties.
20
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While the outside-in and inside-out signaling properties of integrins have been well 

studied
16, 21, 22

,  less is known about the changes in the dynamic interactions that lead to the 

microscale and macroscale integrin clusters within the cell membrane during cell signaling 

events. Because of the size, real-time dynamics of macroscale clusters can be observed using 

conventional optical microscopy. However, observing microscale clustering events in live 

cells require an unobtrusive, non diffraction limited detection technique that minimally 

disturbs the system. For this, FRET, a technique based on the non radiative transfer of energy 

between donor and acceptor fluorophores that are in close proximity, has been used 

previously to measure the microscale  spatial characteristics of biomolecules.
23, 24

 The FRET 

technique is discussed in detail below. Previous experimental attempts to study microscale 

integrin clustering using FRET assays involved direct attachment of fluorescent probes to the 

integrins.
25, 26

  Figure 3 (top) shows the study done by Kim M. et al where integrin subunits 

were cloned with either donor (mCFP) or acceptor (mYFP) fluorescent proteins. FRET was 

observed when the subunits were in close proximity ( < 10 nm).
26

  

Figure 3. FRET assays to measure integrin microclustering by tagging the integrins. (adapted 

from references 25 & 26)  
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In another study (Figure 3, bottom), the α subunit was tagged, via cloning, with either the 

donor (Rluc) or acceptor (GFP) proteins. The clustering of integrins was induced by external 

stimulus and subsequent energy transfer between the Rluc and GFP was observed when the 

integrins were within ~ 8 nm distance.
25

  

There are two important points that must be noted when measuring FRET using the 

above approaches. The direct attachment of fluorescent probes to the integrins could 

potentially alter the properties of integrins and their interaction with other biomolecules. 

Secondly, if mutant integrins are to be studied, several time intensive steps of cloning the 

fluorescent probes to each mutant would be required.  

Recently, integrin microclustering was studied using a FRET assay that precluded the 

need for attaching the fluorescent probes directly to the integrin and the cloning of these 

probes for every mutant integrin.
27

 Figure 4 shows the schematic of the assay that involves 

Figure 4. Schematic of the FRET assay used to measure integrin microclustering with donor 

and acceptor FRET reporters. (from reference 27)  
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FRET reporters. These reporters were constructed by cloning the extracellular donor and 

acceptor fluorescent proteins to the native cytoplasmic transmembrane domain of the β 

subunit of integrins. These reporters were co-expressed along with the integrins in the cells 

and found to cluster when integrins cluster. The experiments showed that utilization of FRET 

reporters did not alter the ligand binding affinity of integrins and the measured FRET values 

were independent of the reporter’s expression levels. No FRET was observed in the absence 

of integrins. Both ligand binding affinities and FRET values increased when integrins 

contained mutations. 

 

Fluorescence Resonance Energy Transfer (FRET) 

Fluorescence Background. Fluorescence spectroscopy is routinely used in many 

applications and caters to industries such as pharmaceuticals, biotechnology, agriculture, 

food and beverage and environmental testing. When light is absorbed by the fluorophore, the 

molecule transitions from the ground electronic state to one of the higher energy state called 

excited electronic state (Figure 5, step 1).  

 There are multiple vibrational energy levels within an excited electronic state that a 

Figure 5. Energy level diagram showing the process of fluorescence spectroscopy (adapted from 

Invitrogen Inc.) 
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fluorophore can attain depending upon the excitation energy (wavelength) of the external 

light source. Since the fluorophore is unstable at a higher excited electronic state, it 

eventually adopts the lowest excited electronic state which is semi-stable (Figure 5, step 2). 

Next, the fluorophore returns to the ground state by emitting excess energy in the form of 

light (figure 5, Step 3). The emitted light is of lower energy and thus longer wavelength than 

the absorbed light due to the loss of energy in the transient state as shown in Figure 5, step 2. 

Because the excitation and emission wavelength are different, the absorbed and emitted light 

are detected as different colors on the visible spectrum. The fluorophore on reaching the 

ground state can undergo this process of absorbing and emitting light repeatedly implying 

that one fluorophore can generate signal multiple times thereby making fluorescence a very 

sensitive technique. In theory this cycle can continue indefinitely. However, in practice 

photobleaching often occurs because the fluorophore structure changes such that it no longer 

fluoresces under prolonged illumination of the sample.  

Measuring Nanoscale Dynamics. In order to examine the molecular level 

interactions between biological entities, essential in carrying out diverse cellular functions, 

one of the first steps is to determine the proximity and orientation between these entities. 

Often the distances over which interactions between biomolecules take place are on the order 

of several nanometers. Although conventional wide field microscopy permits the monitoring 

of biochemical processes, it cannot reveal information on the order of several nanometer 

lengthscale due to the optical spatial resolution limits defined by the Rayleigh criterion, 

approximately 200 nanometers. Electron microscopy offers ample spatial resolution to 

address the nanoscale regime requirements. But the technique is limited in its efficacy due to 

the lack of precise labeling methodology.  Additionally, the technique is not amenable to 
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imaging live cells, which provides the most information about these biochemical interactions. 

FRET is a technique that can solve these problems on the scale of molecular distances. 

FRET Theory. FRET is used in microscopy to measure the proximity of 

fluorophores. It is a process by which energy is transferred from an excited donor 

fluorophore to a ground state acceptor fluorophore by means of long-range dipole-dipole 

resonance interaction. Figure 6 is the energy level diagram showing the coupled excited state 

transitions involved between the donor emission and acceptor excitation involved in the 

FRET process. Vertical arrows (blue, green and red), denote excitation and emission 

transitions and wavy yellow arrows are the vibrational relaxation. The vertical dashed lines 

represent the coupled transitions as if they arise from photon-mediated electronic transitions. 

Energy is not transferred as a photon, rather as a coulombic charge-charge interaction 

between donor and acceptor molecules. The excited donor fluorophore transfers excited state 

energy directly to the acceptor without emitting a photon as shown by a violet arrow in 

Figure 6. Energy level diagram for the FRET phenomenon (adapted from Nikon Inc.)  
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Figure 6. This results in a sensitized fluorescence that has characteristics similar to the 

fluorescence of the acceptor. 

FRET Measurements. The efficiency of this FRET process is given by E (Equation 

1), which shows the dependence of efficiency on the distance between the donor and 

acceptor fluorophore.
28

 The efficiency varies as the inverse sixth power of the distance 

between the donor and acceptor.  

6

o )/R(1

1

donorbyabsorbedquantaof#

acceptortodonorfromdtransferrequantaof#

r
E


            (1) 

Figure 7 shows the changes in FRET efficiency over the distances between a given 

FRET pair. Since efficiency is proportional to the distance as the inverse of sixth power, a 

sharp decrease in the curve over small distance is observed. Ro, referred to as Forster radius, 

named after the scientist who first proposed the theory of FRET, is defined as the distance at 

which FRET efficiency is 50% and is the characteristic for a fluorescent donor-acceptor pair. 

Figure 7. Shows the changes in FRET efficiency as the separation distance between a given FRET 

pair is changed. (adapted from Olympus America Inc.)  
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The efficiency is close to maxima for distances less than Ro and declines sharply for 

distances greater than Ro.  

The FRET efficiency depends upon Ro which in turn is proportional to many 

parameters. Equation 3 is a mathematical relationship of Ro for an aqueous system, where K 

denotes the dipole orientation factor between the donor-acceptor pair, Qd is the quantum 

yield of the donor, EA is the molar absorption coefficient of the acceptor and J (λ) represents 

spectral overlap between the donor fluorescence and acceptor absorption.  

 1/6

AD

217

o )JEQK10 2.8 R (λ    (2) 

In order to maximize the FRET, donor and acceptor must be selected keeping these 

equations in mind. Thus for a higher FRET there should be a higher overlap between the 

donor emission spectra and acceptor excitation spectra (Figure 8), the quantum yield of donor 

should be high, the acceptor should have a high absorption coefficient. In addition, the 

transition dipoles of donor or acceptor must be oriented favorably with respect to each other. 

K defines the degree of orientation and can vary between 0 and 4. For most of the practical 

applications, K is assumed to be 2/3. 
29

 It is important to note that the variables given in 

Equation 2 govern the FRET efficiency only by the sixth power. For example, if a variable is 

increased by 100%, the effective change in FRET would be less than 20%.  

Knowing that FRET occurs over 1-10 nm distances and is sensitive to the relative 

orientation of the fluorophores, FRET-based analysis is well-suited to probe the protein-

protein interactions that occur between two molecules positioned within several nanometers 

of each other.  
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Measuring protein-protein interactions using FRET  

Recent years has seen enormous growth in the application of FRET that includes 

studying the spatial distribution and assembly of protein complexes, the structure and 

conformations of proteins and nucleic acids, receptor ligand interaction, formation of 

receptor dimers, nucleic acid hybridization and many more.  

G-protein coupled receptor (GPCR) is a well known protein involved in variety of 

cellular processes and undergoes changes, such as dimerization and oligomerization, to 

perform various cellular functions. FRET has been used to demonstrate the existence of 

GPCRs as either homo- or hetero- oligomeric complexes.
30, 31

 Epidermal growth factor 

receptor (EGFR) is a cell surface receptor and participates in various cellular processes, for 

example, mediating immune response in human skin.
32

 Misregulation and mutations in 

EGFR has been known to play a significant role in many pathological conditions including 

cancers.
33-35

 FRET has been utilized in studying the agonist-induced dimerization of the 

epidermal growth factor receptor.
36-39

 FRET has also been used to study the protein-induced 

DNA bending by measuring the changes in the energy transfer between fluorophores 

localized at the ends of the target DNA duplex.
40

  The FRET technique has been used to 

study the binding of monovalent haptens to cell-bound immunoglobulinE and the 

dihydropyridine binding to L-type Ca
+2

-channels.
41, 42

 Hybrid formation and dissociation of 

oligonucleotides in living cells has been studied with the use of FRET.
43

 The technique has 

been used to study protein-protein interactions in plant systems as well.
44
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FRET instrumentation  

 A standard fluorescence microscope can be used to measure FRET in a simple, fast 

and non-destructive way. 
45-48

 FRET can be easily calculated using Equation 3, where IDA 

represents intensity when donor is excited and emission of acceptor is measured and IDD 

represents intensity when donor is excited and emission of donor is measured.  

DD

DA

I

I
FRET         (3) 

 However, there are two important factors that should be accounted for before 

reasonable FRET can be measured. Equation 2 shows the strong dependence of FRET on the 

overlap between the emission of donor and the excitation of acceptor. When ensuring a 

substantial overlap between donor fluorescence and acceptor excitation, in all the practical 

applications there is invariably some contamination of the IDA intensity that can occur (Figure 

8).  

 This happens due to the direct excitation of the acceptor along with the donor 

(overlap of Aabs and Dabs curves) and a fraction of donor fluorescence leaking into detection 

Figure 8. Excitation and emission spectra of a typical donor-acceptor pair used in FRET 

measurements. (adapted from reference 44)  
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channel for the acceptor fluorescence (overlap of Dem and Aem curves). In addition, there are 

undesired spectral overlap of acceptor fluorescence with the acceptor excitation (overlap of 

Aem and Aabs curves) and the donor excitation (overlap of Aem and Dabs curves).  

 Bleedthrough Factors. The FRET measurements need to account for these 

contaminations referred to as bleedthrough or crosstalk. In that regard combination of optical 

filters and samples (acceptor only, donor only) are used to obtain images and the 

bleedthrough factors can be determined using the following equations. 

)(

)(

AAA

ADA

I

I
a         (4) 

)(

)(

AAA

ADD

I

I
b         (5) 

)(

)(

DDD

DAA

I

I
c         (6) 

)(

)(

DDD

DDA

I

I
d         (7) 

 The term in parentheses represents what sample is present, whether the sample 

contains only donor (D) or only acceptor (A). The factor ‘a’ represents the acceptor 

bleedthrough in FRET filter channel; the factor ‘b’ represents the acceptor bleedthrough in 

Donor filter channel; the factor ‘c’ represents the donor bleedthrough in Acceptor filter 

channel. The factor ‘d’ represents donor bleedthrough in FRET filter channel. The 

experimental setup should be such that these factors are as small as possible minimizing the 

bleedthrough. These bleedthrough factors can be used to correct the FRET equation, which 

will be discussed in detail later.  
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 FRET Indices. Besides bleedthrough factors, donor-to-acceptor stoichiometry in the 

sample needs to be considered when measuring FRET. Typically tens to hundreds of samples 

(e.g. cells) are analyzed to get a statistically significant FRET. Not all the cells maintain the 

same ratio of donor-acceptor stoichiometry. In order to account for this variation in the 

concentration of fluorophore as well as the bleedthrough factors, several user-defined FRET 

indices have been developed.
46, 49-53

 The numerator of these FRET indices contains correction 

term for bleedthrough the denominator renders the whole index independent of the 

fluorophore concentration. Some of the commonly user-defined FRET indices developed by 

different researchers as per their experimental conditions are given below. 

DD

DDAADA
c

I

dIaII
/DF


         (8) 

DD

AADA
a

I

aII
/DF


          (9) 

AA

DDAADA
c

I

dIaII
/AF


                   (10) 

AA

DDDA
d

I

dII
aFR/AF


                    (11) 

AADD

DDAADA

IIG

dIaII
FRETN




                   (12) 

AADD

DDAADA

II

dIaII
FRET




                   (13) 

Equations 8-9 represent the indices where donors denominate the indices
51-53

. 

Equations 10-11 represent group of indices
49, 50

 where acceptor concentration denominates 
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the index and Equations 12-13 represent the indices
45, 46

 where both the donor and acceptor 

concentration denominates the index.  

Fluorescence Microscope Set-up: A schematic of the fluorescence microscope in our 

laboratory is shown in Figure 9. The set up consists of an inverted standard Nikon TE2000 

microscope that can be easily configured to measure FRET. The light source is a mercury 

lamp and the filters correspond to the fluorescent molecules used in the study. The light 

enters into the microscope and after travelling through the excitation filter, a select 

wavelength band is reflected by the dichroic and impinges upon the sample through the 

objective.  

 

 

The same objective is used to collect the fluorescence signal from the sample as well. 

The dichroic mirror reflects the excitation wavelengths when light is going towards the 

sample and transmit the emission wavelengths when light is coming from the sample. The 

emitted signal transmitting through the dichroic passes through the emission filter and 

Figure 9. Diagram of the fluorescence microscope used to collect the FRET data. The sample 

illumination and collection optics is shown in the dashed circle. 
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reaches the detector. A charged coupled device (CCD) is used as a detector to capture the 

light coming out of the emission filter. The software ImageJ is used for collecting and later 

analyzing the data to get a FRET value. The bleedthrough factors are calculated before any 

FRET data can be computed. Cells expressing only donor and only acceptor were used to 

collect the data. The values of bleedthrough factors have been discussed in detail in the 

chapter 2. 

 

 

DISSERTATION ORGANIZATION 

This dissertation is primarily focused on developing methods to measure integrin 

microclustering. Traditionally, integrin microclustering has been measured using FRET, by 

attaching fluorescent tags directly to the integrins.
25, 26

 This approach could potentially affect 

integrins’ properties such as its diffusion and its clustering within the plasma membrane. 

Moreover, the above methodology would require time intensive cloning steps to separately 

tag each integrin mutants. A recent approach overcame the above mentioned problems and 

demonstrated the utility of a novel FRET assay format in measuring the integrin 

microclustering.
27

 

The aforementioned FRET assay format can be further developed to relate the 

integrin microclustering with the signaling events that involve intracellular proteins and 

plasma membrane cholesterol. The following two research chapters, presented as separate 

manuscripts, describe the FRET assay development to decipher the relationship of integrin 

microclustering with intracellular proteins and cholesterol. 
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 Chapter 2 presents the coupling the FRET based imaging with the RNAi technique to 

identify key cytoplasmic proteins that affect the integrin microclustering. Chapter 3 discusses 

the measurement of integrin microclustering and lipid diffusion under altered plasma 

membrane cholesterol levels. In chapter 4, the dissertation concludes with a summation of 

the current work and a look at the future directions.  
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 CHAPTER 2: IDENTIFYING CYTOPLASMIC PROTEINS THAT AFFECT 

RECEPTOR CLUSTERING USING FLUORESCENCE RESONANCE 

ENERGY TRANSFER AND RNA INTERFERENCE 

 

A paper published in Analytical and Bioanalytical Chemistry 2009, 395 (7), 2303-2311* 

 

Deepak Dibya, Suzanne Sander and Emily A. Smith 

 

ABSTRACT 

 Unraveling the complex, dynamic organization of the cell membrane can provide 

vital information about many aspects of cellular functions. Reported herein is a method for 

identifying cytoplasmic proteins that affect cell membrane protein organization. RNA 

interference (RNAi) is used to reduce the expression of select cytoplasmic proteins and a 

fluorescence resonance energy transfer (FRET) assay is used to measure changes in receptor 

microclustering. The advantage of this assay is that it does not require attaching fluorescent 

tags to the receptor. A change in energy transfer after reducing the expression of a 

cytoplasmic protein provides information about the protein’s role in altering receptor 

organization. As a demonstration of the method, cytoplasmic  

*Reprinted with permission from The Journal of Analytical and Bioanalytical Chemistry  

Copyright © Springer-Verlag 2009  
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proteins involved in integrin microclustering have been identified. The cytoplasmic proteins 

targeted in this study include: dreadlock, integrin-linked kinase, paxillin, steamer duck, 

vinculin, rhea, focal adhesion kinase, and actin 42A.Reducing the expression of vinculin, 

paxillin, rhea, and focal adhesion kinase increased integrin microclustering, as measured by 

an increase in energy transfer in cells expressing αPS2CβPS integrins. No change in integrin 

microclustering was measured in a control cell line. Integrin mutants exhibited different 

microclustering properties compared to the wild-type integrins after reducing the expression 

of the listed cytoplasmic proteins. The results demonstrate the utility of this assay format, and 

provide insight into the function of cytoplasmic proteins in integrin microclustering. 

 

INTRODUCTION 

 A dynamic flow of information between the extracellular and intracellular 

environments of a cell is required for survival, growth, proliferation, differentiation, and 

other basic functions (1). The primary signal transducers are receptor cell membrane 

proteins. Receptors transmit information through three primary mechanisms: (a) binding 

extracellular ligands; (b) engaging a cascading network of intracellular signaling partners; 

and (c) clustering within the membrane. Several analytical techniques, such as co-

immunoprecipitation, surface plasmon resonance, affinity chromatography, and two-hybrid 

systems, are used to measure the interactions of receptors with their intracellular and 

extracellular signaling partners (2). 
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 Observing nanoscale receptor organization in live cells requires a non-invasive 

detection technique that is not subject to diffraction-limited spatial resolution. Fluorescence 

resonance energy transfer (FRET) is ideally suited for measuring nanoscale membrane 

organization (3). FRET studies of receptor microclustering have primarily used the direct 

attachment of donor and acceptor fluorescent proteins to the extracellular or intracellular 

domain of the membrane protein (4, 5). Direct fluorophore attachment could potentially alter 

the receptor’s clustering properties, as well as their interaction with other biomolecules. This 

experimental approach also requires time-consuming protein cloning steps to attach the 

donor and acceptor fluorescent proteins to each protein mutant. 

 A recently reported FRET assay overcomes these problems (6). Shown in Fig. 1 is a 

schematic of this FRET assay, which is used to measure the microclustering of αPS2CβPS 

integrins. Integrins are heterodimeric cell membrane receptors that are pivotal to many 

cellular functions, and mediate signaling through both the cytoplasm and the extracellular 

matrix (1, 7). The integrin microclustering assay used FRET reporter peptides that were 

expressed in cells along with integrins. The FRET reporter peptides contain the integrins’ β 

subunit cytoplasmic and transmembrane domain fused to donor or acceptor fluorescent 

proteins. A previous report showed that the β cytoplasmic and transmembrane region is 

sufficient for clustering with full-length integrin in vivo (8). The donors and acceptors were a 

monomeric yellow fluorescent protein variant mVenus and a monomeric dsRED variant 

mCherry, respectively. Hereafter, the term FRET reporters refers to a population of donor 

transmembrane peptides and a separate population of acceptor transmembrane peptides.  
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 The fusion of fluorescent proteins to the β subunit transmembrane and cytoplasmic 

domain to generate FRET reporters allows the donor and acceptor fluorophores to take part 

in integrin clustering. When integrins cluster, so do the FRET reporters. This results in a 

reduced average donor–acceptor separation distance and an increase in observed FRET. The 

use of FRET reporters eliminates the need to attach the donor and acceptor directly to the 

integrin, and does not require numerous steps to clone donor and acceptor fluorescent groups 

to each integrin mutant. The integrin diffusion and clustering properties are not altered in this 

assay format since the fluorescent proteins are not directly attached to the integrins. The 

reporters: (a) do not contain ligand-binding domains so there is no competition between the 

integrin and FRET reporters for ligand; (b) do not alter the integrins’ ligand binding affinity; 

and (c) do not produce energy transfer in the absence of integrins (6). A set of FRET control 

peptides contained the same fluorescent proteins cloned to the transmembrane and 

cytoplasmic domains of a protein (mouse CD2) with no sequence homology in S2 cells. The 

assay has been used to measure receptor clustering, but it has not been demonstrated that it 

can be used to relate intracellular binding events with receptor clustering. This would enable 

a more detailed molecular understanding of cell membrane organization. 

 Reported herein is a systematic approach for identifying cytoplasmic proteins that 

affect receptor microclustering. The method uses the FRET assay described above along with 

RNA interference (RNAi) to reduce the expression of select proteins. Changes in energy 

transfer are measured to identify proteins that affect integrin microclustering. The 

cytoplasmic proteins that have been studied include: rhea (9), vinculin (10), paxillin (10), 
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focal adhesion kinase (10), steamer duck (11), dreadlock (11), integrin-linked kinase (11)and 

actin42A (12). 

 

EXPERIMENTAL 

S2 cell culture 

 Transformed Drosophila S2 cells were cultured in Shields and Sang M3 insect media 

(M3, Sigma) supplemented with 10% fetal bovine serum (Irvine Scientific), 12.5 mM 

streptomycin, 36.5 mM penicillin, and 0.2 μM methotrexate (Fisher Scientific) in a 22°C 

incubator. Cells were co-transfected to express integrin subunits and FRET reporters or 

FRET controls. Complete protein sequences for the FRET controls, FRET reporters 

containing mVenus or mCherry fluorescent proteins (6), wild-type and mutant integrin 

subunits (6, 13-15)have been published elsewhere. All endogenous proteins contain the heat 

shock promoter. 

 

dsRNA synthesis 

 Double-stranded RNA (dsRNA) was generated using published protocols with minor 

modifications, as noted below (16). Polymerase chain reactions were used to amplify 200 to 

700-bp DNA sequences from S2 genomic DNA. The primer sequences can be identified 

from the information listed in Table 1. Both forward and reverse primers contained the T7 

RNA polymerase promoter binding site (TAATACGACTCACTATAGGG). The polymerase 
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chain reaction products were analyzed using 1% agarose gel electrophoresis and were 

subsequently used as templates for RNA synthesis with the MEGASCRIPT T7 Transcription 

Kit (Ambion, Austin, TX) to produce single stranded RNA. The single-stranded RNA 

products were ethanol-precipitated and re-suspended in water. dsRNAs was generated by 

incubating the solution at 65°C for 30 min followed by slow cooling to room temperature, 

and analyzed by 1% agarose gel electrophoresis to ensure that only the desired product was 

obtained. The concentration was measured using the solution absorbance at 280 nm and the 

solutions were diluted to 1 μg/μL. The dsRNA solution was stored at −20°C until subsequent 

use. 

 

RNAi treatment 

 Detailed protocols have been previously published, and were followed with changes 

noted below (16, 17). Approximately 6×10
5
 cells were plated per well in a 12-well cell 

culture dish. Cells were rinsed with 600 μL of serum-free M3 medium, and 300 μL of serum-

free media was added to each well. Ten micrograms of dsRNA was added directly to each 

well, and the cells were incubated for 60 min in a 22°C incubator followed by addition of 

300 μL M3 media containing 20 % fetal bovine serum. The cells were incubated at 22°C for 

an additional 4 days. Reduced expression of the target protein has been reported up to 5 days 

after RNAi treatment. 

 

FRET assay 
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 After RNAi treatment and 4 days of incubation, cells were transferred from the cell 

culture dish to a polypropylene tube and heat-shocked for 30 min at 36°C to induce the 

expression of integrins and FRET reporters or controls. Cells were then placed in a 22°C 

incubator for 3 h to achieve maximum protein expression. The cells were centrifuged at 

approximately 600×g, the pellet was resuspended in serum-free medium and the 

concentration was adjusted to 3×10
5
 cells/mL. The cells were placed on a RBB-tiggrin coated 

substrate and allowed to spread for 1 h in the serum-free medium. Details about the RBB-

tiggrin substrate are provided in the supplemental information. The medium was replaced 

with 20 mM BES Tyrodes buffer prior to analysis. The analysis was completed within 1.25 h 

of replacing the medium with BES buffer to ensure cell viability. At least three RNAi 

treatments were performed for every targeted protein and every cell line. The cells were 

analyzed using a ×60 magnification, numerical aperture 0.95 objective and a Eclipse 

TE2000U microscope (Nikon) with low-intensity mercury lamp illumination. The images 

were captured with a Coolsnap CCD camera (Roper Scientific Photometrics, Pleasanton, 

CA) using the program Micromanager, which operates within the ImageJ 1.37v software. 

The camera was set to bin 8×8 pixels. Images were captured utilizing three different filter 

sets for each cell analyzed: (a) donor filter set (excitation 500/20 nm, emission 535/30 nm), 

(b) acceptor filter set (excitation 545/30 nm, emission 620/60 nm), and (c) donor excitation 

filter with acceptor emission filter (FRET filters). The exposure time for the FRET, acceptor 

and donor images were 12, 6, and 6 s, respectively. The Drosophila S2 cells did not move in 

the time it took to capture the three images.  
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Data and statistical analysis 

 Data was analyzed using the program ImageJ, and a plugin that was developed with 

the Java platform. The plug-in calculates a FRET value for each pixel in the image. After the 

appropriate background value is subtracted from each pixel, a FRET value is calculated using 

the equation:  

     (1) 

where IDA, IAA, and IDD are intensities obtained from the images with the FRET, acceptor, 

and donor filters, respectively. The factors a, b, c, and d account for bleedthrough of: 

acceptor into the FRET filters, acceptor into the donor filters, donor into the acceptor filters, 

and donor into the FRET filters, respectively. All four bleedthrough factors were non-zero on 

the microscope system used in these studies. Further discussion of the bleedthrough factors 

can be found in the supplemental information. There are numerous alternative FRET 

equations that can be used in conjunction with this methodology (18-20). Equation 1 is 

suitable for measuring increases or decreases in FRET efficiency after RNAi treatment.  

 All statistical analyses were performed using the application JMP 7 (SAS Institute 

Inc, Cary, USA), with statistical consulting through the Iowa State University Department of 

Statistics. For every reported value, at least 100 cells from three replicate experiments were 

analyzed. The raw FRET data are not normally distributed, which means that statistical tests 

such as the t-test cannot be used on the raw data. The data were transformed to a normal 
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distribution by taking the natural log of the raw data, and the means were calculated from the 

transformed data. The Welch test was used to compare the means of the log-transformed data 

since the data sets were determined to have unequal variances by Levene’s test. Results of 

the Welch Test are reported as p values, which are a measure of the significance of the 

statistical tests. A p value lower than 0.05 provides evidence that the energy transfer 

measured for the RNAi treatment data set is altered compared to the no RNAi treatment data 

set. A p value greater than 0.05 does not provide the statistical evidence to say there is a 

difference between the data sets. In order to report the mean value in the original data scale, 

the antilog of the mean of the log-transformed data was taken. Further information on these 

methods can be found in statistics textbooks (21). 

 

RESULTS AND DISCUSSION 

FRET assay 

 Figure 1 shows a schematic of the FRET assay used to study the effect of cytoplasmic 

proteins on integrin microclustering in live cells. A set of three images is captured for each 

cell: donor, acceptor, and FRET. Figure 2 shows a series of images used to calculate energy 

transfer in cells expressing wild-type integrins and FRET reporters. Using a home-built plug-

in for the program ImageJ, an energy transfer value is calculated for each pixel in the image 

using Eq. 1. A region of interest (ROI) is generated for each cell. Specifically, background 

regions and regions corresponding to the nuclear and perinuclear regions are excluded from 

the analysis. Intense fluorescence is observed in these regions, corresponding to FRET 
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reporters inside the cell. The signal from the nuclear and perinuclear regions interferes with 

the measurement of integrin clustering in the cell membrane. An example ROI is shown in 

Fig. 2. An average value is calculated from all the pixels in a ROI to generate a single FRET 

value for each cell. The distribution of FRET values for all pixels in the example ROI is 

provided in the supplemental information (Supplemental Figure S1).In order to ensure that a 

suitable ROI can be defined, only spread cells with diameters greater than 20 μm are 

analyzed. The average diameter of the spread cells analyzed by FRET did not statistically 

differ for any of the cell lines or RNAi treatments (data not shown). 

 In order to measure intracellular events that affect integrin clustering, without 

interference from extracellular ligand binding, minimizing extracellular signaling is 

desirable. To accomplish this, cells were spread on a surface with low ligand density. The 

extracellular ligand for the integrins used in these studies (RBB-tiggrin) is a 53 amino acid 

protein. Assuming RBB-tiggrin’s size is 2 nm×3 nm (22), and all the RBB-tiggrin adheres to 

the glass slide, approximately 3% to 5% of the 30 mm
2 

glass slide is covered at the ligand 

density used in these studies. Bovine serum albumin is used to cover the remaining glass 

surface to inhibit non-specific cell binding to the glass. A surface with no ligand, coated only 

with bovine serum albumin, would completely eliminate extracellular signaling events. 

However, cell attachment and cell spreading were significantly reduced when no ligand was 

present. The reduced cell spreading in the absence of ligand precluded FRET measurements 

on a large-enough number of cells to provide statistically significant results.  

 Energy transfer was measured in cells expressing integrins and FRET reporter 

peptides or FRET control peptides. The integrins were either wild-type or mutants. Two 
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well-characterized integrin mutants that are studied have different ligand-binding affinities 

compared to wild-type integrin. The mutant αanaβ integrins contain a two-point mutation in 

the cytoplasmic domain of the α subunit. This mutation is considered to mimic signal 

transduction from inside to outside the cell (23). The mutant αβV409D integrins contain a 

single-point mutation in the extracellular domain of the β subunit that mimics signal 

transduction from outside to inside the cell (24). 

 At 3% to 5% ligand surface densities, statistically similar energy transfer values were 

measured for three cell lines expressing wild-type or mutant (αanaβ, αβV409D) integrins and 

FRET reporters (Table 2). This indicates similar levels of FRET reporter microclustering for 

the three cell lines at these experimental conditions. Similar energy transfer values are also 

obtained for cells expressing wild type integrins and FRET reporters compared to cells 

expressing wild-type integrins and FRET controls (Table 2). Three factors must be 

considered to interpret these results: (1) the energy transfer values are above the detection 

limit for the microscope system; (2) the total energy transfer measured is a result of integrin-

specific FRET reporter clustering and non-integrin-specific FRET reporter clustering from 

many sources; (3) at high ligand densities, higher energy transfer values are measured for 

cells expressing FRET reporters compared to cells expressing FRET controls. At 3% to 5% 

ligand densities, the energy transfer reported in Table 2 (αβ FRET Reporters, αanaβ FRET 

Reporters, αβV409D FRET Reporters) is the result of non-integrin-specific microclustering 

of the FRET reporters. Integrin-specific clustering would be detected as an increase in energy 

transfer for the cell line expressing FRET reporters relative to the cell line expressing FRET 

controls, which is observed at high ligand densities (6). It is not possible to say that no 
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integrin microclustering occurs at 3% to 5% ligand density. Integrin microclustering that 

causes an insignificant increase in FRET reporter microclustering relative to the non-

integrin-specific microclustering of the FRET reporter may be present. The data presented in 

Table 2 is referred to as the no RNAi treatment data in the following discussion. 

 

RNAi transfection 

 RNAi was used to reduce the expression of select cytoplasmic proteins. The proteins 

targeted in this work are highlighted gray in Fig. 1. These proteins are known to be involved 

in integrin-signaling complexes, and are expressed in S2 cells as reported in the FLIGHT 

mRNA microarray expression database (24) and PeptideAtlas mass spectrometry proteomics 

database (25). S2 cells are a Drosophila cell culture system. Due to substantial structural 

homology between vertebrate and invertebrate integrins, as well as a similarity between 

many of the integrin-signaling pathways, information learned about integrin microclustering 

in Drosophila cells can be used to advance the understanding of vertebrate integrins (26). 

 The choice of Drosophila cell culture is optimal for these studies because rapid, 

simple, and selective reduction in protein expression is possible using RNAi (16, 27). A 

similar technique used in mammalian cell culture, short-interfering RNA (i.e., siRNA), often 

suffers from low specificity for the targeted protein and an immune response to the RNA. In 

RNAi experiments, approximately 500-bp double-stranded RNA corresponding to the 

mRNA sequence of the targeted protein is used to reduce protein expression. Whole-genome 

RNAi studies have been performed, and the sequences used to reduce protein expression in 

these studies are published and available in several online resources (28, 29). The RNAi 
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probes used in this study were selected from these resources. Two criteria were used in 

selecting the RNAi probes: thermodynamic binding efficiency and selectivity. The selectivity 

is a measure of other proteins that may be targeted by the RNAi probe. Since the goal of this 

work is to identify specific proteins that affect integrin microclustering, only probes with 

100% selectivity to the targeted protein were chosen for the FRET studies (other targets, 

Table 1). The actin42A probe targets the entire class of actin proteins, but does not target 

other protein classes. Once internalized, the approximately 500- bp dsRNA is reduced to 

approximately 21-bp fragments.The thermodynamic binding efficiency presented in Table 1 

is a measure of how many of the possible 21-mers have thermodynamically favorable 

binding to the target mRNA. This value is not necessarily reflective of the amount the 

target protein’s expression is reduced. For a given protein, RNAi probes with 100% 

selectivity and the highest efficiency were selected. Another important consideration is 

possible changes in cell viability after RNAi treatment. None of the RNAi treatments altered 

cell viability compared to cells that did not receive RNAi treatment (data not shown).  

 A cell line expressing green fluorescent protein (GFP) fused to actin 42A was used 

show that the RNAi protocol used in these studies facilitates the delivery of dsRNA into the 

cytoplasm. Four days after RNAi treatment against actin 42A, a 21% reduction in the GFP 

fluorescence was measured compared to cells that did not receive RNAi treatment 

(Supplemental Figure S2). The reduction in protein expression will vary with each RNAi 

probe. Typical RNAi knockdown efficiencies for Drosophila cell culture are between 95–

99% and 62–100% using Western blotting and cell phenotype analysis, respectively (16, 30).  
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Cytoplasmic proteins that affect integrin microclustering 

 Figure 3 (black data bars) shows the average FRET values for at least 100 S2 cells 

expressing wild-type integrins and FRET reporters after the indicated RNAi treatment. The 

data were normalized and statistically compared to the value obtained for the no RNAi 

treatment data.  

 Four of the RNAi treatments resulted in higher levels of energy transfer compared to 

the no RNAi treatment data: vinculin, paxillin, rhea, and focal adhesion kinase. The higher 

energy transfer values indicate an increase in the microclustering of the FRET reporters, 

which may be due to integrin-specific interactions, non-integrin-specific interactions or a 

combination of both, as discussed above. This can be determined by measuring the energy 

transfer in a cell line expressing integrins and FRET control peptides (Fig. 3, gray data bars). 

If the increase in energy transfer measured after RNAi treatment for cells expressing 

integrins and FRET reporters is non-integrin-specific, then increased energy transfer is 

expected in the cell line expressing the FRET controls. However, if the increase in energy 

transfer is the result of integrin-specific interactions, no change in energy transfer is expected 

for the cell line expressing the FRET controls. There was no statistically significant change 

in energy transfer after any of the RNAi treatments for cells expressing the FRET controls. 

These results indicate that the increase in energy transfer measured in the cell line containing 

the FRET reporters, after vinculin, paxillin, rhea, and focal adhesion kinase RNAi treatment, 

is measuring integrin-dependent increases in FRET reporter microclustering. Reducing the 

expression of these cytoplasmic proteins increases FRET reporter clustering due to increased 
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integrin microclustering. These proteins prevent integrin microclustering under the 

conditions used in these studies.  

 It is not possible to relate the magnitude change in energy transfer to a magnitude 

change in integrin microclustering using Eq. 1. Furthermore, the change in integrin 

microclustering may be dependent on how much protein expression is reduced. For each 

RNAi-targeted protein, the amount its expression is reduced may differ. Different 

thermodynamic efficiencies (Table 1), the amount of target mRNA within the cell, and 

differential transport of the dsRNA probe across the cell membrane will influence how 

efficient the overall RNAi treatment is in reducing expression. The methodology reported 

here can be used to determine the cytoplasmic proteins that alter integrin microclustering, 

which has important implications for intracellular signaling events. On-going efforts will 

enable a quantitative connection between the change in energy transfer and the change in 

integrin microclustering.  

 

Cytoplasmic proteins that affect the microclustering of integrin mutants  

 Details about the molecular mechanism of protein clustering can be obtained by 

studying protein mutants. Figure 4 (black data bars) shows the FRET values for S2 cells 

expressing αβV409D mutant integrins and FRET reporters after the indicated RNAi 

treatment. In addition to the four cytoplasmic proteins identified as increasing energy transfer 

in cells expressing wild-type integrins, an additional RNAi treatment show a statistically 

significant increase in energy transfer compared to wild-type cells. This protein is dreadlock, 
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which forms a link between integrins and receptor tyrosine kinases. This suggests that 

disruption of the cytoplasmic linkage between αβV409D integrins and receptor tyrosine 

kinases results in higher integrin microclustering.  

 A previous study revealed the microclustering of the αβV409D integrin mutant is 

dependent on the presence of other membrane proteins (6). When the extracellular domains 

of all membrane proteins were digested from the cell surface prior to expressing the integrins 

and FRET reporters, the microclustering of the αβV409D mutant decreased. In contrast, there 

was no change in the microclustering of wild-type integrins when the extracellular domains 

of other membrane proteins were removed from the cell membrane. The previous study did 

not reveal the identity of the membrane protein(s) responsible for the microclustering of the 

αβV409D mutant since all membrane proteins were simultaneously targeted for removal. In 

addition, the transmembrane and cytoplasmic domains of the other membrane proteins 

remained in the membrane, and key integrin contacts in the cytoplasm may not have been 

disrupted. The use of FRET reporters and RNAi, as outlined in this report, has the benefit 

over previous methods for measuring the molecular mechanism of receptor clustering 

because the entire protein is removed,not just a fragment of the protein, and an individual 

protein can be targeted. The FRET results for the αβV409D mutant reveal receptor tyrosine 

kinase is at least one membrane protein responsible for its altered microclustering, via the 

cytoplasmic protein dreadlock, compared to wild-type integrins. 

 In comparison to the  αβV409D mutation, the αanaβ mutation’s microclustering 

properties were altered only with RNAi treatment for paxillin at 3% to 5% ligand density 

(Fig. 4, gray data bars). When the same RNAi probe is used to reduce the expression of a 
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cytoplasmic protein in different populations of the same cell type (e.g. S2 cells), the 

magnitude of the change in energy transfer can be cautiously compared. The FRET data 

indicates a 1.6-fold increase in FRET after paxillin RNAi treatment as opposed to six- and 

four-fold increase with wild-type and αβV409D mutant integrins, respectively. The 

remaining RNAi treatments that were studied showed no statistically significant differences 

for the αanaβ mutation compared to the no RNAi treatment data. The lack of change in 

integrin microclustering for the αanaβ mutation reflects a ‘defect’ in the ability of the 

cytoplasmic proteins to participate in the microclustering of this mutation. The lack of 

change in energy transfer for the αanaβ mutation is not the result of higher microclustering 

levels prior to the RNAi treatments.The energy transfer value obtained for the αanaβ no 

RNAi treatment data is similar to the values for cells expressing wild-type and the αβV409D 

mutation (Table 2). Therefore, αanaβ integrin microclustering levels are similar to other cell 

lines at 3% to 5% ligand density, prior to RNAi treatment. Additionally, higher energy 

transfer values have been measured for this cell line in the presence of a high ligand 

concentration (6), indicating that increased microclustering is possible under some 

circumstances.  

 It should not be surprising that decreased energy transfer was not measured after any 

of the RNAi treatments. As discussed above, at 3% to 5% ligand density the energy transfer 

measured before treatment is from non-integrin-specific microclustering of the FRET 

reporters, and the integrin-specific microclustering that may be present is below the detection 

limit for this assay. The cytoplasmic proteins that prevent integrin microclustering, in the 

absence of binding to extracellular ligand, have been identified. When the expression of these 
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proteins is reduced, increased energy transfer is measured. When the ligand density is 50% 

on the glass surface, integrin microclustering levels are higher than what is measured at 3% 

to 5% ligand densities. Preliminary studies utilizing cells spread on a densely coated ligand 

surface have revealed that decreased energy transfer values after RNAi treatment can be 

obtained (unpublished data).  

 

CONCLUSION 

 The organization of the cell membrane is important for many basic cell functions, and 

can lead to pathological conditions when it is altered. Currently, few non-invasive analytical 

techniques can measure intracellular events that lead to changes in the organization of the 

cell membrane. The combination of FRET and RNAi has the unique capacity for measuring 

integrin organization without altering the integrin dynamics. Specific cytoplasmic events 

leading to integrin microclustering can be identified. When cells are spread on a surface with 

3% to 5% ligand density, it was found that four proteins that connect integrins to the 

cytoskeleton also affect integrin microclustering. The molecular mechanism of integrin 

microclustering is further understood by analyzing integrin mutants. The microclustering of a 

mutation (αβV409D) that affects the ligand-binding domain is more sensitive to cytoplasmic 

interactions that indirectly link integrins to receptor tyrosine kinases compared to wild-type 

integrins. On 3% to 5% ligand surface densities, an alpha cytoplasmic mutation (αanaβ) loses 

its sensitivity to microclustering when the expression of all cytoplasmic proteins studied, 

except paxillin, is reduced. This methodology is not limited to integrins. Similar strategies 
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can be used to study other classes of cell membrane receptors, and will enable a complete 

understanding of how receptor organization is directed by cytoplasmic binding events.  
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Table 1 RNAi probes used to reduce protein expression in S2 cells 

 

Cytoplasmic Protein RNAi probe ID 

Thermodynamic 

binding 

efficiency
a
 

Other protein 

targets 

Vinculin (Vin) HFA18728 33/493 No 

Paxillin (Pax) BKN29242 72/293 No 

Rhea HFA11300 101/487 No 

Focal Adhesion Kinase 

(FAK) 
HFA07426 136/483 No 

Integrin Linked Kinase 

(ILK) 
HFA11868 89/469 No 

Dreadlock (Dock) HFA00812 44/220 No 

Steamer Duck (SD) HFA17070 19/249 No 

Actin42A HFA04835 53/480 Yes 

 

 

The RNAi probe ID, efficiency and other target values are from published and online 

resources: http://flyrnai.org 

 

 
a 
The first value in the column is the number of 21 base pair oligonucleotides that have 

thermodynamically favorable binding to the target mRNA,and the second value in the 

column is the total number of 21 base pair oligonucleotides generated from the RNAi probe 
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Table 2 Mean FRET values from at least 100 cells expressing FRET reporters or controls and 

the indicated integrins: αβ, wild-type; αanaβ, α cytoplasmic mutation; αβV409D, β 

extracellular domain mutation 

 

β 

FRET Reporters 

anaβ 

FRET Reporters 

βV409D 

FRET Reporters 

β 

FRET Controls 

0.013 0.016  (p=0.33) 0.017  (p=0.23) 0.013 (p=0.96) 

 

 

Cells are spread on a glass surface coated with a 3% to 5% ligand density, all data are 

statistically compared to the value obtained for cells expressing wild-type integrins with 

FRET reporters 
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Fig. 1 Schematic showing FRET assay and proteins known to be involved in integrin-

signaling complexes. Cytoplasmic proteins targeted in this study to measure how they affect 

integrin micro-clustering: rhea, vinculin, actin, integrin-linked kinase (ILK); CG32528, 

paxillin, dreadlock (Dock); steamer duck and focal adhesion kinase (FAK). (top) No energy 

transfer takes place when FRET reporters are separated by greater than 10 nm. (bottom) 

Reduced expression of a target cytoplasmic protein (e.g., Paxillin) increases integrin 

clustering and increases energy transfer from donor (D) fluorescent protein to acceptor (A) 

fluorescent protein. This is a static picture of a dynamic system. 
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Fig. 2 Fluorescence images of a transformed Drosophila S2 cell, expressing αPS2CβPS 

integrins and FRET reporters. Image obtained using (top) donor filter set; (middle) acceptor 

filter set; (bottom) FRET filter set. Color has been added to correspond to the emission filter 

used to generate each image. FRET values are calculated on a pixel-by-pixel basis according 

to Eq. 1. A region of interest is generated for each cell that excludes fluorescence emanating 

from inside the cell. An example region of interest is shown in the top image (green)  
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Fig. 3 Normalized FRET values for S2 cells expressing wild-type integrins and FRET 

reporters (black data bars) or wild-type integrins and FRET controls (gray data bars) after the 

indicated RNAi treatment. All values are normalized to the no RNAi treatment data (Table 

2). A p value below 0.05, shows statistical evidence that the energy transfer measured after 

RNAi treatment is altered compared to the no RNAi treatment data set. The abbreviations 

used in this figure are listed in Table 1 
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Fig. 4 Normalized FRET values for S2 cells expressing αβV409D mutant integrins and 

FRET reporters (black data bars) or αanaβ mutant integrins and FRET reporters (gray data 

bars) after the indicated RNAi treatment. A p value below 0.05 shows statistical evidence 

that the energy transfer measured after RNAi treatment is altered compare to the no RNAi 

treatment data set. The abbreviations used in this figure are listed in Table 1  
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Supplemental Experimental Methods 

 

FRET Bleed-through Factors 

 The factors a, b, c, and d account for bleed-through of: acceptor into the FRET filters, 

acceptor into the donor filters, donor into the acceptor filters, and donor into the FRET filters, 

respectively. These values were measured in cell lines that contained only the acceptor FRET 

control plus wild-type integrins (for a and b) or donor FRET control plus wild-type integrins 

(for c and d). The data (not shown) for these bleed-through factors reveal a dependence on 

the amount of donor and acceptor expressed in the cell, and were fit to exponential curves:  

 

   a = 0.103 + 0.565·exp(-0.540×10
-2

·IAA);    (2) 

   b = 0.013 + 0.274·exp(-0.466×10
-2

·IAA);    (3) 

   c = 0.077 + 0.344·exp(-0.905×10
-2

·IDD);    (4) 

   d = 0.276 - 0.027·exp(-0.346×10
-3

·IDD).    (5) 

 

 For the FRET calculations, if the donor fluorescence intensity was below 50 or the 

acceptor fluorescence intensity was below 50, the cell was rejected from the analysis.  These 

lower threshold values were used to minimize the residual between the exponential fit and 

experimental bleed-through factor experimental data. The applied bleed-through factor was 

determined on a pixel-by-pixel basis during the FRET calculation. Background subtraction 

was performed on all images using an average intensity from cell-free regions of the image, 

and zero cellular autofluorescence was observed in the donor, acceptor or FRET images 

using the stated acquisition parameters. 
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Preparation of RBB-Tiggrin Surfaces 

RBB-tiggrin is a bacterial fusion protein containing the integrin binding domain of the 

extracellular matrix protein tiggrin. RBB-tiggrin was produced as described previously.
17

 

Glass microscope slides (Fisherbrand, Fisher Scientific) were sterilized in 70% ethanol for 15 

min and dried in a sterile environment. They were coated with a sterile solution containing 

0.05 g/mL RBB-tiggrin in pH 7 phosphate-buffered saline (PBS) for 2 h. The RBB- tiggrin 

solution was then removed and any remaining exposed glass surface was blocked using a 10 

mg/mL solution of bovine serum albumin in pH 7 PBS. Coated slides were stored overnight 

at 2 °C and used within 24 h. 

 

Actin-GFP Assay 

S2 cells expressing integrins, UASpGFP tagged actin42A and pAdhGAL4, were RNAi 

treated for actin42A. Using these constructs, expression of actin42A-GFP is constitutively 

active. After RNAi treatment and incubation for 4 days, cells were transferred from the cell 

culture dish and collected by centrifugation. Cells were prepared for microscopy as described 

above for the FRET assay. The cells were imaged using a GFP filter set (excitation 470/50 

nm and emission 545/75 nm). 
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Figure S1: Distribution of FRET values for one cell. The X-axis represents FRET value and 

the Y-axis denotes the number of pixels with a given FRET value. All values reported in this 

image are multiplied by a factor of 100, relative to the FRET values reported in Table 2 of 

the main text. 
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Figure S2: RNA knock-down efficiency. In order to estimate the efficacy of the RNAi 

treatments in reducing protein expression, a cell line expressing cytoskeletal protein actin42A 

tagged with green fluorescent protein (GFP) was utilized. The cells were treated with dsRNA 

for actin42A. This dsRNA also targeted five other actins expressed in S2 cells. Fluorescence 

intensities were measured after incubating 4 days with dsRNA. Shown in Figure S2A (left) is 

the fluorescence image of control cells expressing actin42A-GFP and (right) the fluorescence 

image of the same cell line after actin42A RNAi treatment. Both images are shown in the 

same intensity scale. The histograms in Figure S2B show the fluorescence of 100 cells (left) 

for control cells expressing actin42A-GFP and (right) the same cell line after actin42A-

average. The mean fluorescence value for the control cell line is 590 and after RNAi 

treatment the mean value is 466. A statistically significant reduction in fluorescence is 

measured after RNAi treatment, as determined using the Welch Test (p=0.008).  
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CHAPTER 3: NON-INVASIVE MEASUREMENTS OF CHOLESTEROL’S ROLE IN 

INTEGRIN MICROCLUSTERING  

 

 

A paper submitted to Biophysical Journal 

 

Deepak Dibya and Emily A. Smith  

 

 

ABSTRACT 

Reported herein is a method to study the role of cholesterol in the microclustering of a 

ubiquitous class of membrane receptors termed integrins. Integrin microclustering was 

measured using a fluorescence resonance energy transfer (FRET) assay that does not require 

the direct attachment of fluorescent donors or acceptors onto the integrins; thus minimizing 

unwanted perturbations to integrin clustering. Membrane cholesterol levels were reduced 

using methyl-β-cyclodextrin (mβCD), as confirmed using Amplex red assays. Subsequent 

changes in integrin microclustering were measured in cells expressing wild-type or mutant 

integrins. Changes in energy transfer after reducing cholesterol concentrations provided 

evidence for the role of cholesterol in integrin microclustering. Restoration of original 

cholesterol levels was used to confirm that the measured changes in membrane properties 

were cholesterol-dependent. While less integrin microclustering was measured after 
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cholesterol depletion for a cell line expressing wild-type integrins, there was no change or a 

significant increase in integrin microclustering after cholesterol depletion for cells expressing 

cytoplasmic or ligand-binding domain integrin mutants, respectively. Possible correlations 

between lipid diffusion and integrin microclustering were studied with fluorescence recovery 

after photobleaching (FRAP) using a fluorescent lipid mimetic. Similar lipid diffusion 

coefficients were measured irrespective of the integrins being expressed before and after 

cholesterol depletion. 

 

INTRODUCTION 

Survival, growth, proliferation, differentiation and proper functioning of cells are 

largely dependent on maintaining a dynamic flow of information between the external and 

internal environments of the cell (1). Towards this end, cells employ receptors to relay 

information inside and outside of the cell (2-5). One of the mechanisms for signal 

transduction involves clustering of receptors within the cell membrane. Receptor clustering 

has been involved in many vital processes such as immunological synapse formation, actin 

cytoskeleton regulation and leukocyte regulation (6-8). A class of receptors that are 

fundamental to many critical cellular functions is integrins (1, 9). They are heterodimeric 

proteins composed of one α subunit noncovalently associated with one β subunit. They 

mediate signaling through the cytoplasm by binding to adapter proteins and through the 

extracellular matrix by binding ligand (9, 10). 
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Fluorescence microscopy has been used to study the clustering of integrins within the 

cell membrane (11-13). Observing clusters in live cells that are smaller in size than the 

diffraction-limit of light requires an imaging technique such as FRET (14-16). In previous 

studies, integrin microclustering was measured using a FRET assay that did not require 

attaching donor and acceptor FRET pairs directly to the integrins (17, 18). Energy transfer 

was measured using reporter peptides, which were generated by cloning the FRET donor or 

acceptor fluorescent protein to the transmembrane and cytoplasmic domain of the integrin β 

subunit. Hereafter, these will be referred to as FRET reporters. The FRET reporters were co-

expressed with unaltered integrins (17, 18). When integrins cluster in the membrane, so do 

the FRET reporters. This decreases the average separation distance between the donor and 

acceptor FRET reporters, and an increase in energy transfer is measured. Conversely, when 

the separation distance between integrins increases, less energy transfer is measured using 

the FRET reporters. Control experiments showed that the FRET reporters did not alter key 

integrin properties, and energy transfer was not measured when the FRET reporters are 

expressed but integrins are not.  

In this report, the effect of cholesterol on the microclustering of αPS2CβPS integrins 

is measured using the above mentioned FRET assay. Cholesterol is a small lipid molecule 

that intercalates between the fatty acyl chains of the lipid bilayer. It is known to maintain 

membrane structure, regulate membrane fluidity and directly interacts with some membrane 

proteins (19-23). Cholesterol is an important constituent in membrane nanodomains (i.e., 

lipid rafts), areas with non-uniform compositions of lipids and proteins relative to the bulk 

membrane. Membrane nanodomains have been shown to play a role in many signal 
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transduction events, such as immunoglobulin E (IgE) signaling during the allergic immune 

response, T-cell activation, glial-cell-derived neurotrophic factor signaling and integrin 

leukocyte function-associated antigen-1-mediated cell binding (24-28).  

Cholesterol levels can be modulated in the cell membrane using cyclodextrins, which 

partition cholesterol from cellular membranes into their interior pore. Cyclodextrins can also 

partition other membrane components, but preferentially extracts cholesterol over other lipid 

components (29). Herein, cholesterol extraction is combined with the previously mentioned 

FRET assay in order to measure the role of cholesterol in integrin microclustering. In 

combination, alterations in lipid diffusion were observed in live cells using fluorescence 

recovery after photobleaching (FRAP) under reduced cholesterol levels. 

 

MATERIALS AND METHODS 

S2 cell culture 

All experiments were performed using transformed Drosophila S2 cells. Cells were 

cultured in Shields and Sang M3 insect medium (M3, Sigma) with heat-inactivated 10% fetal 

bovine serum (Irvine Scientific), 12.5 mM streptomycin, 36.5 mM penicillin, and 0.2 µM 

methotrexate (Fisher Scientific) in a 22 C incubator. For FRET assays, cells were co-

transfected to express α and β integrin subunits and FRET reporters. Complete protein 

sequences for the FRET reporters containing mVenus and mCherry fluorescent proteins, and 

mutant integrin subunits have been published previously (17, 30-32). For FRAP assays, cells 
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were transfected to express integrin subunits (i.e., no FRET reporters). All the exogenous 

proteins contain the heat shock promoter.  

 

Cholesterol depletion, restoration and addition 

For cholesterol depletion, the cells were centrifuged at approximately 600×g and the 

resulting pellet was resuspended at a concentration of 2×10
6
 cells/mL in serum-free M3 

medium containing 0.25% methyl-β-cyclodextrin (mβCD) (Sigma-Aldrich, St. Louis, MO) 

and incubated at 22 °C for 30 minutes. For cholesterol restoration, cholesterol depleted cells 

were washed with serum free medium and then resuspended in M3 medium containing 

100µM cholesterol loaded cyclodextrin (chol-mβCD) complex (Cyclodextrin Technologies 

Development, High Springs, FL) for 1 hour at 22 °C.  

For cholesterol addition to untreated cells, the cells were centrifuged at approximately 

600×g, and were resuspended in M3 medium containing four different concentrations 

(100µM, 250µM, 500µM and 1000µM) of chol-mβCD for 1 hour at 22 °C. Prior to FRET, 

FRAP or Amplex Red analyses, the cholesterol depleted, restored or added cells were 

washed in serum free medium to remove the cyclodextrin. 

 

Quantitative measurements of cholesterol 

The total lipid content of cells was extracted using the Bligh–Dyer method (33). 

Briefly, 3.0 mL chloroform/methanol (2:1 v/v) was added to 1.0 mL of ~ 10
6 

cells followed 
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by vigorous vortexing for 15 minutes. Then, 1.0 mL of 1.0 M NaCl was added to the solution 

and the sample was vortexed for 1 minute. The solution was allowed to sit for 10 minutes and 

the chloroform phase was collected and filtered using Whatman filter paper no. 1. The 

chloroform was evaporated under nitrogen, and the cellular lipids were resuspended in 

phosphate buffer containing 0.1 M potassium phosphate, pH 7.4, 50 mM NaCl, 5 mM cholic 

acid, and 0.1% Triton X-100.  

Cholesterol levels were quantified using an Amplex Red Cholesterol Assay (Life 

Technologies, CA) without cholesterol esterase (34). Cholesterol in the lipid extracts was 

oxidized by cholesterol oxidase to produce H2O2. In the presence of horseradish peroxidase, 

the non-fluorescent 10-acetyl-3,7-dihydoxyphenoxazine (Amplex Red) reacts with H2O2 with 

1:1 stoichiometry to produce a highly fluorescent species, resorufin. Fluorescence was 

measured with a microplate reader (Synergy HT fluorescent platereader, BioTek, CA) using 

the excitation filter 530/25 nm and emission filter 590/35 nm. The cholesterol concentration 

was calculated using the equation for a best fit line to a calibration curve (Supplementary 

Figure S2).  

 

FRET and FRAP assay  

Cells were transferred from the cell culture dish to a polypropylene tube and heat-

shocked for 30 min at 36°C to induce the expression of integrins and FRET reporters. To 

achieve maximum protein expression, cells were then placed in a 22°C incubator for 3 hrs. 

After incubation, the cells were subjected to cholesterol depletion/restoration as mentioned 
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above. The cell counts were adjusted to 5×10
5
 cells/mL prior to placing them on a ligand-

coated substrate, the preparation of which has been described previously (18). The cells were 

allowed to spread onto the ligand coated substrate for 1 hour, followed by FRET data 

collection within the next hour, as described in previously (17, 18).  

For FRAP measurements, a carbocyanine DiD dye (Life Technologies, CA) was 

added to the untreated, cholesterol depleted or restored cells at a final concentration of 11.85 

µM. The cells were immediately plated onto the ligand coated substrate. Cells were allowed 

to spread in the dark for 1 hour. The medium was then replaced with 20 mM BES Tyrodes 

buffer prior to FRAP analysis. 

The microscope used for these studies contains two excitation light paths: one for a 

635 nm diode laser (Newport Corp.) and a second for a mercury (Hg) lamp. The Hg lamp 

was used to image the cells before and after photobleaching the membrane incorporated DiD 

dye with the laser that was focused to a 3.14 μm (1/e
2
) diameter spot. A laser shutter and 

CCD (Acton Photon Max 512, Princeton) shutter were synchronized with an external trigger. 

The trigger timing was: 0.45 seconds between image capture, 0.35 second for image capture, 

and 0.35 second for the photobleaching laser pulse. The diffusion coefficients were 

calculated as previously reported (35).  Each reported diffusion coefficient represents an 

average of 10 measurements on different cells.  Statistical significance was assessed using 

the student t-tests with 95% significance to compare the depleted/restored data set to the 

untreated data set. 
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Data Analysis - FRET 

The FRET data were analyzed using an in-house developed Java plug-in for the 

software ImageJ.  After subtracting the background value from each pixel, the plug-in 

calculates a FRET (Eapp) value on a pixel-by-pixel basis using equation 1 (36):  
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)(  )(
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   (1) 

where IDA, IAA, and IDD are intensities obtained from the images with the FRET, acceptor, 

and donor filters, respectively. The terms a, b, c and d account for the bleedthrough in the 

filter sets as previously described (17, 18).  The G term in equation 1 is instrument specific 

and correlates to the decrease in donor fluorescence with an increase in acceptor fluorescence 

due to energy transfer (37). The G value for the instrument set up used in these studies is 

1.419.  

Each FRET value represents 100 independent measurements from 3 replicate 

experiments. Only membrane regions (i.e., excluding regions of the cell where intracellular 

FRET reporters contribute to the signal) are included in the measurement. All FRET data 

were statistically analyzed using the software JMP 7 (SAS Institute Inc, Cary, USA) with 

statistical consulting from Iowa State University Department of Statistics. The raw FRET 

data, being not normally distributed was log transformed and the means were calculated (38, 

39). The means of the log transformed data were compared between FRET data sets of 

treated and untreated cells. After confirming the unequal variance among the data sets, 

statistical significance between the data sets was assessed using Welch t-tests. The 

significance of the statistical test is indicated by p-values. A statistically significant p-value is 
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one that is below 5%, indicating that the means from the two data sets are not the same. A p-

value higher than 5% indicates that there is not enough statistical evidence to show 

dissimilarity between the two data sets. The data is reported in the original data scale by 

converting the means of the transformed data as discussed in standard statistics text books 

(40). 

 

RESULTS AND DISCUSSION 

A schematic of the assay used to measure changes in integrin microclustering due to 

altered cholesterol levels is shown in Figure 1. When the separation distance between 

integrins decreases, the separation distance between the donor and acceptor FRET peptides 

decreases, as has been previously reported (17).  This results in more energy transfer between 

the donor and acceptor fluorescent proteins. Similarly, less energy transfer is measured when 

the integrin separation increases, since the separation distance between FRET reporters also 

increases. The mechanism of the co-clustering of integrins and FRET reporters is currently 

unknown. However, the β transmembrane and cytoplasmic domains contained in the FRET 

reporters have been shown to meet the minimum requirement for clustering with integrins in 

vivo (41).  

The cell line utilized for these studies is Drosophila S2 cells expressing αPS2CβPS 

integrins due to the wealth of data available on the microclustering of this integrin (17, 18). 

This enables a direct comparison to the data obtained for the microclustering of this integrin 

upon altering cholesterol levels. There is substantial structural homology between vertebrate 
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and invertebrate integrins, and many similarities between the integrin-signaling pathways 

(42). The information learned about integrin microclustering in S2 cells can be used to 

advance the understanding of vertebrate integrins. Similar methodology as reported here can 

also be developed for vertebrate cell culture system.  

Unlike mammalian cells, Drosophila cells are sterol auxotrophs and derive sterols 

from their environment (43, 44). In the case of cultured Drosophila cells, the source of 

sterols is from the fetal calf serum added to the growth medium. As confirmed by reverse 

phase high-performance liquid chromatography, the main sterol incorporated in the cell 

membrane of the cultured cells is cholesterol (Supplementary Figure 1). 

 Figure 2 shows the developed strategy to measure the role of cholesterol in integrin 

microclustering. Cholesterol concentrations, lipid diffusion coefficients, and integrin 

microclustering levels were measured in three cell populations: untreated cells containing 

native levels of cholesterol; cells with depleted levels of cholesterol; and cells first depleted 

of cholesterol and then restored to native levels.  Comparison of the measured parameters in 

the three populations provides evidence for the role of cholesterol in altering the organization 

of integrins in the cell membrane. 

 Prior to measuring integrin microclustering and lipid diffusion, cholesterol levels 

were quantified in the three cell populations. Figure 3 (black data bars) shows the average 

cholesterol concentration per cell prior to cholesterol depletion. The cells utilized in these 

studies expressed wild-type or mutant integrins and FRET reporter peptides. Two well-

characterized integrin mutants have been used in this study. The mutant αanaβ integrin 

contains a two-point mutation in the α subunit near a site where cytoplasmic proteins are 
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known to bind and is considered to mimic the signal transduction from inside to outside the 

cell (45). The mutant αβV409D integrin contains a single point mutation located in the 

extracellular domain of the β subunit and is considered to mimic signal transduction from 

outside to inside the cell (45). Compared to the wild-type integrins, increased affinity for 

ligand has been observed with both mutants (17).   

 As shown in Figure 3, there are only slight variations in cholesterol levels in 

untreated cells (black data bars). This is consistent with all three cells lines having been 

derived from the same S2 parent cell line, and with previous studies where 10
-14

 to 10
-16

 

moles cholesterol/cell has been measured (46, 47). Regardless of the starting cholesterol 

concentration, there is an approximately 50% reduction in cholesterol concentration in all 

cells lines after treatment with mβCD (white data bars) relative to untreated cells.  

 The measured reduction in cholesterol after mβCD treatment is primarily from loss of 

cholesterol in the cell membrane, and not the loss in the intracellular cholesterol. This is 

important to consider since the aim of this work is to measure the role of cell membrane 

cholesterol on integrin microclustering. The individual contributions from intracellular 

cholesterol and plasma membrane cholesterol cannot be established by the Amplex red assay 

since total cellular cholesterol is measured. In order to minimize the contribution of 

intracellular components in the Amplex red assays, no cholesterol esterase was used. This 

ensures that intracellular cholesterol esters do not contribute to the measurement.  In a recent 

study, a direct in-situ analysis of plasma membrane cholesterol levels using a fluorescent 

probe showed ~ 70% decrease in membrane cholesterol compared to the control cells that did 

not undergo cyclodextrin treatment (48). Since the plasma membrane is the only cell surface 
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in direct contact with mβCD, only plasma membrane cholesterol is available for partitioning 

into the mβCD. The measured 50% reduction in cholesterol levels is within the 20-80% 

range that has been measured in previous studies using cyclodextrins (47, 49-51).  

 In addition to reducing cholesterol concentrations, it was hypothesized that further 

information about the role of cholesterol in integrin microclustering could be obtained by 

increasing the concentration of cholesterol in the membrane. Considering the cell density 

used in these studies, the native cholesterol concentration is ~ 4 µM. The concentration of 

cholesterol in the M3 medium supplemented with 10% fetal bovine serum is ~ 45 µM. In 

addition to this basal cholesterol concentration, an additional 100, 250, 500 or 1000 µM of 

chol-mβCD was added to the growth medium. Figure 4 shows the average cholesterol 

concentration in cells that were treated with additional cholesterol did not result in a 

statistically significant increase in membrane incorporated cholesterol. The results indicate 

that the level of cholesterol in the untreated membrane is saturating under these conditions, 

and further increase in membrane cholesterol using this methodology is not possible.  

 

Cholesterol affects lipid diffusion  

Cholesterol has been shown to affect lipid diffusion in the cell membrane (50, 52, 

53).  To evaluate the role of cholesterol in lipid diffusion in wild-type and mutant integrin 

expressing S2 cells, FRAP measurements were performed to measure the diffusion 

coefficient of a fluorescent lipid analog: DiD. FRAP involves photobleaching DiD in a 

defined area in the cell membrane, and then recording the time it takes to repopulate the 
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photobleached species by the diffusion of the unbleached dye molecules. To avoid any 

spectral interference due to the fluorescence from the FRET reporters, cells expressing wild-

type or mutant integrins with no FRET reporter were used for the FRAP studies. 

Supplementary Figure S3 shows a representative FRAP recovery curve used to measure the 

DiD diffusion coefficients (35). 

 Table 1 shows the diffusion coefficients measured for the three cell lines before and 

after cholesterol depletion. Across the three cell lines, the results indicate a similar level of 

membrane fluidity in untreated cells, as measured by DiD diffusion. These diffusion 

coefficients are consistent with the values obtained in other cell types, which range from 10
-9

 

– 10
-10 

cm
2
/s (50, 52-54). When cholesterol levels were depleted to 50% of the starting 

concentration, membrane fluidity increased in all the three cell lines by approximately 20 to 

40%. This result was found to be a statistically significant increase relative to the values 

obtained prior to cholesterol depletion, and is consistent with previous results (50).  

 

Cholesterol affects integrin microclustering 

 Cells were spread on a glass substrate coated with a ligand for the αPS2CβPS 

integrins at a ligand surface density of 3% to 5%. In order to ensure integrin-ligand 

interactions were the only mechanism for cell spreading, non-specific interactions with the 

glass substrate were inhibited by coating the remaining exposed glass with bovine serum 

albumin. Previous studies have found that the properties of integrin microclustering are 

dependent on the ligand’s surface density (17, 18). Under these conditions, the role of 
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cholesterol in integrin microclustering with minimal binding to extracellular ligand is being 

measured. Similar studies could be performed at higher ligand densities. 

 Table 2 shows the average FRET values for the three cell lines before and after 

cholesterol depletion. At 3% to 5% ligand surface density, the mean FRET value for cells 

expressing wild-type or mutant integrins and FRET reporters indicates statistically similar 

levels of energy transfer for all three cells lines (untreated cells). These results indicate 

similar amounts of integrin microclustering in all cell lines before cholesterol depletion, and 

are consistent with previous studies (18).  

 After reducing membrane cholesterol concentrations by 50%, integrin 

microclustering is altered in two of the three cell lines studied (Table 2, Cholesterol depleted 

cells).  There is a 50% decrease in energy transfer for cells expressing wild-type integrins 

after cholesterol reduction, indicating that there is less microclustering of αPS2βPS integrins. 

For cells expressing αanaβ integrins, there was no statistically significant change in energy 

transfer after cholesterol depletion. There is a more than 3-fold increase in energy transfer for 

the cells expressing αβV409D mutant integrins after cholesterol depletion. The increase in 

energy transfer indicates that cholesterol depletion allows the αβV409D integrins to reduce 

their separation distance when there is less cholesterol in the membrane. 

 The energy transfer measured using the FRET assay depicted in Figure 1 is a result of 

both integrin-specific interactions with the FRET reporters and non-integrin specific 

interactions from many possible sources. Assuming the non-integrin specific contributions to 

energy transfer are similar for the three cells lines derived from the S2 parent cell line, the 

differences in energy transfer listed in Table 2 are primarily from integrin-specific 
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interactions with the FRET reporters.  The lipid diffusion coefficients measured after 

cholesterol depletion support this assumption. There is an increase in the lipid diffusion 

coefficient after cholesterol depletion for all three cell lines (Table 1), which could result in 

an increase in transient interactions between donor and acceptor FRET reporters during the 

multi-second acquisition times used to collect the FRET data. However, there is an increase 

in energy transfer only for the cholesterol depleted cells expressing αβV409D integrins.  

 The changes in energy transfer measured after cholesterol depletion report on the 

amount of integrin microclusters that are cholesterol dependent. There may be integrin 

microclusters present that are not altered by reducing cholesterol concentrations, which 

would not result in a change in energy transfer after cholesterol depletion. While the amount 

of integrin microclustering in the cell membrane is similar for all three cell lines before 

cholesterol depletion, the distribution of these microclusters into cholesterol dependent 

regions is not the same, as determined by different changes in energy transfer after 

cholesterol depletion. This fact may be due to the differences in the integrins’ ligand affinity, 

which has been shown to alter the integrins’ equilibrium conformation, and, as we suggest, 

their localization in the membrane. The integrin ligand affinity from lowest to highest is: 

wild-type, αanaβ, αβV409D. The amount of cholesterol dependent clustering from most 

clustered to least clustered: wild-type (-50%), αanaβ (0%, not statistically significant), 

αβV409D (+240%). Studies with additional integrin mutants could further test this 

hypothesis. 

 Previous studies have shown that treatment with mβCD can extract membrane 

phospholipids along with cholesterol (29), and that restoration of membrane properties, such 
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as diffusion coefficients, are achieved by restoring the cholesterol levels to their original 

values (22). The measured changes in membrane properties were confirmed to be the result 

of cholesterol extraction, and not another membrane component, by adding cholesterol back 

to the membrane to observe if the membrane properties were restored to the original values. 

The cholesterol depleted αβV409D expressing cells were incubated with chol-mβCD and 

cholesterol concentrations were measured as previously described. Figure 3 (dashed data bar) 

shows that the cholesterol level in cells expressing the αβV409D mutant integrins and FRET 

reporters can be restored to the level similar to untreated cells. The FRAP results (Table 1) 

indicate that the lipid diffusion coefficient for the αβV409D cell line is restored to a 

statistically same value compared to the untreated cells.  Similarly, the FRET results (Table 

2) indicate that αβV409D integrin microclustering levels return to the original value obtained 

for the untreated cells. These results confirm that the membrane properties being measured 

for this cell line are a result of altered cholesterol concentration in the membrane, and not 

from another membrane component(s) that may be simultaneously altered, since only 

cholesterol levels were restored to their original value.  

 

CONCLUSIONS 

Integrins are ubiquitous membrane receptors that are important in nearly all cell 

signaling cascades, including those that control basic cellular functions (55-57). Therefore, it 

is important to understand the molecular mechanism of integrin function. This not only 

includes the much studied changes in ligand affinity and macro-scale clustering, but also the 

lesser studied changes in receptor microclustering. The data reported herein highlights a 
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simple method that can be used to elucidate the role of cholesterol in wild-type integrin 

microclustering, and for integrins with altered signaling properties. Upon cholesterol 

depletion, the maximum change in integrin microclustering was measured for cells 

expressing αβV409D integrins, which have the highest affinity for ligand out of the three 

integrins included in this study. Restoring cholesterol to native levels also restored the levels 

of αβV409D integrin microclustering, indicating the measured changes are cholesterol-

dependent. Similar FRET assays can be utilized to measure the role of cholesterol in the 

microclustering of integrins in other cell types and for other members of the integrin family.  

These assays are currently being developed. 
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Table 1. Lipid diffusion coefficients measured by FRAP for the untreated cells, 

cholesterol depleted cells and (βV409D cell line only) cholesterol restored cells 

 

Cell Lines 

Untreated 

cells 

(cm
2
/s) 

Cholesterol 

depleted cells 

(cm
2
/s) 

p-value * 

Cholesterol 

restored 

cells (cm
2
/s) 

p-value * 

β 

Reporters  
1.91×10

-9
 2.41×10

-9
 0.048 - - 

anaβ 

Reporters 
1.95×10

-9
 2.36×10

-9
 0.0095 - - 

βV409D 

Reporters  
2.03×10

-9
 2.81×10

-9
 0.0004 1.94×10

-9
 0.37 

 

* The data for cholesterol depleted/restored cells has been statistically compared with 

the untreated data set and the statistical significance is represented by the p-values 
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Table 2. Integrin microclustering levels measured by FRET for the untreated cells, 

cholesterol depleted cells and (βV409D cell line only) cholesterol restored cells 

 

 Cell Lines 
Untreated 

cells 

Cholesterol 

depleted 

cells 

p-value * 

Cholesterol 

restored  

cells  

p-value * 

β 

Reporters  
0.010 0.005 0.020 - - 

anaβ 

Reporters 
0.011 0.014 0.36 - - 

βV409D 

Reporters  
0.008 0.026 0.0001 0.006 0.45 

 

* The data for cholesterol depleted/restored cells has been statistically compared with 

the untreated data set and the statistical significance is represented by the p-values 
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Figure 1. Schematic of the FRET assay used to measure integrin microclustering with donor 

and acceptor FRET reporters. Energy transfer is measured (Top) prior to altering the plasma 

membrane cholesterol level; (Middle) after reducing the concentration of cholesterol by 

approximately 50%; and (Bottom) after restoring cholesterol levels to approximately the 

starting concentration before treatment. 
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Figure 2. Schematic showing the steps to alter the cholesterol levels in Drosophila S2 cells. 

Cyclodextrins (methyl-β cyclodextrin) were used to reduce the concentration of cholesterol 

in live cells, followed by addition of cholesterol (Chol-mβCD) to the growth medium to 

restore cholesterol levels. In each cell population, integrin microclustering and lipid diffusion 

were measured with FRET and FRAP, respectively. 

 



www.manaraa.com

88 

 

Figure 3. Graph of the amount of cholesterol measured per cell in three cell populations 

(black) untreated cells before cholesterol reduction; (white) after reduction with mβCD to 

extract cholesterol; and (dashed) after adding chol-mβCD to the growth medium to restore 

cholesterol levels. Error bars represents three replicate experiments. Details of the cell lines 

are found in the text.  
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Figure 4. Graph of the amount of cholesterol measured per βV409D integrin expressing 

cell after adding additional cholesterol to the growth medium.  The basal concentration of 

cholesterol in the growth medium is 45 µM. Error bars represents three replicate 

experiments. 
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Supplementary Figure S1. Chromatogram of lipid extract from transformed Drosophila S2 

cells. Traces represent lipid extract from cells and lipid extract spiked with a cholesterol 

standard. Lipid extracts obtained with the Bligh-Dyer method, were analyzed using High 

Performance Liquid Chromatography (HPLC) with a UV-Vis detector (Agilent, USA). A 

reverse phase C-18 column (ZORBAX Eclipse XDB-C18, 4.6x150mm, 5 µm) was used with 

a flow rate of 1.0 ml/min. The absorbance was monitored at 205 nm wavelength. The mobile 

phase solvents consisted of 3 % water and the remaining 97% consisted of   

acetonitrile/methanol (50/50, v/v). 5 µL of the lipid extract was injected into the column.  
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Supplementary Figure S2. Calibration curve obtained using an Amplex red assay and 

cholesterol standards. Error bars represent three replicate experiments.  
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Supplementary Figure S3. Example of FRAP curve showing the changes in fluorescence 

intensity for the photobleached spot (triangles) on membrane of cells expressing wild-type 

integrins.  Carbocyanine DiD is used to dye the membrane. Initial four data points represent 

pre-photobleached spot. Approximately 70% decrease in fluorescence intensity is observed 

immediately after photobleaching. Over time the photobleached spot is repopulated with 

unbleached DiD dye molecules and full recovery is begins within ~6 seconds of 

photobleaching. The difference between recovered and the pre-bleached intensity shows a 

~20% immobile fraction within the membrane. The experimental data was fitted to an 

exponential curve. The dotted lines is plotted to obtain the time at which the 50% of the 

recovery was achieved, which is used to calculate the diffusion coefficient.  
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CHAPTER 4: GENERAL CONCLUSIONS AND FUTURE PROSPECTS 

 

GENERAL CONCLUSIONS 

Currently, few analytical techniques can measure nanoscale events in an in-vivo 

environment leading to a better understanding of the organization of the cell membrane. The 

work presented in this thesis describes how intracellular signaling events can be measured by 

coupling the FRET and RNAi techniques. The ability to measure intracellular signaling 

events opens the way to further investigate other signaling pathways using this approach. 

Also, the dissertation describes how cholesterol sequestration is combined with FRET to 

deduce the role of cholesterol in the cell signaling.  

The second chapter focuses on combining FRET with RNAi to measure integrin 

microclustering without altering the integrin dynamics. The data presented herein revealed 

that four cytoplasmic proteins involved in connecting integrins with the actin cytoskeleton 

also affect integrin microclustering when extracellular signaling events are minimal. The 

results also indicated that αβV409D mutant integrin is more sensitive to interactions linking 

integrins to receptor tyrosine kinases (RTK) compared to wild-type integrins. For alpha 

cytoplasmic mutation (anaβ integrins), the data indicated no change in microclustering 

when expression of all the cytoplasmic proteins except paxillin is reduced. 

The data reported in chapter three elucidates the role of cholesterol in integrin 

microclustering. This study reports the alterations in integrin microclustering in response to 

cholesterol depletion and restoration. Quantitative changes in integrin microclustering and 

lipid diffusion are measured when more than 40% membrane cholesterol is depleted. More 

than 20% increase in lipid diffusion, at reduced cholesterol levels, was observed for the cells 
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expressing wild-type or mutant integrins. Upon cholesterol depletion, maximum change in 

lipid diffusion and energy transfer is observed for cells expressing αβV409D integrins, which 

have the highest ligand affinity of the three integrins studied here. The reversibility of the 

process was assessed by reintroducing cholesterol in the cholesterol depleted cells. Both the 

lipid diffusion and the integrin microclustering are restored in the cells expressing the 

αβV409D integrins, indicating the measured changes are cholesterol dependent. Because of 

the limited uptake of cholesterol by S2 cells, measuring integrin microclustering under more 

than normal cholesterol levels were not possible.  

FUTURE PROSPECTS 

The scope of the developed method described in this dissertation is not just limited to 

measuring integrin microclustering under altered levels of cholesterol and cytoplasmic 

proteins. The method demonstrated herein can be applied in many different combinations to 

determine various factors that affect integrin microclustering.  

Previous studies by Smith et al. showed the dependence of αβV409D mutant integrin 

microclustering on the presence of other membrane proteins.
1
 In Chapter 2 (Figure 4) the 

FRET results for αβV409D mutant revealed that the receptor tyrosine kinase (RTK) can 

possible affect integrin function. This FRET data can be used as a preliminary evidence to 

target the RTK, using RNAi, and measure the subsequent changes in integrin 

microclustering. Another membrane protein that can be studied is insulin like receptor (InR), 

which has been previously shown to be associated with integrins and are natively expressed 

in S2 cells.
2
 A class of membrane proteins called tetraspanins is known to interact with the 

alpha subunit of integrins and also forms web like complexes among themselves and with 
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integrins.
3
 Studying the integrin function under reduced expression of one or more 

tetraspanins can provide useful insights into the interplay between integrins and tetraspanins.  

The method can be further extended to observe the changes in integrin 

microclustering under the simultaneous reduced expression of both the membrane proteins 

and cytoplasmic proteins. Based on this thesis finding and a known previous relationship 

between DOCK and RTK, valuable information can be obtained by targeting DOCK and 

RTK simultaneously and measuring the αβV409D mutant integrin microclustering.  

As an extension to the approach presented in this dissertation, coupling the three 

techniques FRET assay, RNAi technique and cholesterol sequestration can unravel complex 

interactions between the integrins and other cellular components. Additionally, a more 

complex connection can be made between intracellular signaling events and extracellular 

signaling events by performing the experiments in chapter 2 at high ligand density.  

Integrins are not the only class of receptors that can be studied using the FRET 

reporters. Other receptors can also be studied using appropriately designed FRET reporters. 

A good choice will be an important class of receptors called EGFR. 
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APPENDIX I: Statistical Analysis of FRET and FRAP data 

Deepak Dibya and Emily A. Smith 

 

 In order to statistically analyze the skewed data, the data can be reduced by 

transforming the data thereby reducing the skewness. The mathematical transformations that 

can be applied to the data include square root, reciprocal, logarithm etc. If a transformation is 

used, it is important to check whether the normal distribution of the data is achieved after the 

transformation or not.  

 All the FRET and the FRAP data presented in this dissertation has been statistically 

analyzed using the application JMP 7 (SAS Institute Inc, Cary, USA), with statistical 

consulting through the Iowa State University Department of Statistics. An example of the 

statistical analysis of the FRET data is presented in this appendix.   

 Open the JMP 7.0 program and follow the steps to statistically analyze the data.  

1. File>New>Data table 
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2. Select Cols>Add New Column. The next window prompts to name the new 

column and provide column characteristics. Ensure that the data type is set to 

numeric and Modeling is continuous.  

 

3. Double click on Column 1. Change the data type to character and 

modeling type to Nominal.  

 

4. After assigning the modeling types to the columns, begin data analysis by pasting the 

data in Column 2; one data set followed by the other. Column 1 contains the 

information given by data in Column 2, where control and experiment are 

represented by 0 and 1 in Column 1 respectively. The cells in the columns with dots 

showing no data are not included when analyzing the data.  
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5. The normal distribution of the data can be determined by using the menu function 

Analyze>Distribution and selecting Column 1 as By and data columns as 

Y, Columns. 

                             

           

6. The distribution function shows that the raw data is not normally distributed (Figure 

1, Column 2) which means statistical tests like t-test cannot be utilized for data 

analysis. The normal distribution was achieved by taking the natural log of the raw 
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data (Figure 1, Column 3), and the means were compared using Welch’s t-test on the 

transformed data.  

                           

Figure 1. Distribution of raw data  (column 2) and log transformed data (column 3) 

 

7. In order to perform t-test, select Analyze>Fit X by Y and use Column 1 as X 

factor and data sets as Y, Response. Click on the small red triangle at the 

corner of the plot, then select UnEqual Variances  
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8. This (as shown in figure below) presents the results of statistical analysis that can 

now be used to interpret the data.   

 

 The Welch t-test is a modification of the student t-test and does not assume equal 

variances. Results of the Welch t-test are reported as p-values. A p-value of less than 0.05 

suggests that the two means are different. Moreover, a p-value of more than 0.05 does not 

indicate that the two means are same. It means that there is not enough statistical 

evidence to show that the two means are different. Two means with a p-value of greater 

than 0.05 can be statistically different if the sample size under analysis was too small or 

the null hypothesis is really true. This would require advance statistical analysis of the 

data.  
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APPENDIX II: Expression, Purification and Estimation of Taq DNA 

Polymerase 

Deepak Dibya and Emily A. Smith 

 

INTRODUCTION 

 Polymerase chain reaction (PCR) is a well known reaction invented by Kary Mullis in 

1985 for the in-vitro amplification of DNA sequences. Figure below shows how this 

technique can be utilized in making large number of copies of a gene from a template DNA. 

 

 

      Adapted from the homepage of Andy Vierstraete 

 

 There are several chemicals and enzymes required to complete the PCR. One of the 

key components in duplicating DNA sequences in PCR is an enzyme called Taq polymerase. 

This enzyme has been isolated previously and is widely used in PCR based applications. Taq 
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polymerase is a thermostable enzyme and can survive the temperature fluctuations involved 

in PCR. The enzyme participates in a template directed syntheses of DNA fragments and 

requires free Mg
2+

 for its optimum functioning.  

 The protocol for making Taq polymerase is well developed and is routinely used in 

academia and industry to express and purify the enzyme. Since commercial Taq polymerase 

is expensive, Taq polymerase was prepared in Smith group at Iowa State University  

 

EXPERIMENTAL 

 Taq polymerase synthesis is a four step process. First, bacterial cell culture media is 

prepared to grow DH5α E.coli cells that contains plasmid specific for Taq polymerase. The 

second step involves the expression of Taq polymerase in the confluent cell culture by 

chemical induction. This is followed by purification of the enzyme. Finally the efficacy of 

the purified enzyme is validated by performing a PCR reaction and analyzing the PCR 

products in on a agarose gel electrophoresis. Also, the efficiency of the enzyme is compared 

with commercially available enzyme and an optimum amount of enzyme is estimated to 

conduct future PCR reactions.  

 

Preparation of terrific broth (media) 

 Taq polymerase was purified from DH5α E.coli cells expressing the inserted plasmid 

specific for Taq polymerase. The cells were grown in terrific broth media. To make terrific 
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broth media,12 g bactotryptone, 24 g yeast extract and 4 mL glycerol were dissolved in 900 

mL water and sterilized. To this sterilized solution, 100 mL sterile solution of 0.17 M 

KH2PO4 and 0.72 M K2HPO4 was added. Antibiotic used for pTaq was ampicillin. 

Ampicillin was not added to the entire solution but to only that portion of the media that was 

used for growing cells. 

 

Expression of Taq polymerase 

 1.0 µL of 50 mg/mL ampicillin solution was added to 1.0 mL of the terrific broth 

media. The media was inoculated with DH5α E. coli cells and incubated overnight at 37C. 

100 µl of this culture was used to inoculate a fresh 1.0 mL culture media containing 1.0 µL 

of 50 mg/mL ampicillin. It was then followed by incubation for 90 min at 37C. This culture 

was transferred to a 100 mL fresh culture media (pre-warmed to 37C in an incubator) 

containing 100 µL of 50 mg/mL ampicillin. The above culture was incubated at 37C until an 

OD600 of 0.3 and then induced with 25 µL of 2.0 M IPTG. The culture was again incubated 

for 16 hours at 37C and then centrifuged at 5000 rpm for 5 minutes to obtain a pellet of 

cells.  

 

Purification of Taq polymerase 

 The pellet obtained from the culture was resuspended in 3 mL of Buffer A (50 mM 

Tris pH 7.9, 50 mM dextrose,1.0 mM EDTA, 4mg/mL lysosyme) and incubated for 15 min 
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at room temperature. To this was added 3.0 mL of buffer B (10.0 mM Tris pH 7.0, 50 mM 

KCl, 1.0 mM EDTA, 0.5% Tween20, 0.5% Noni P40) and the solution was incubated for 60 

min at 75C with shaking. It was followed by centrifugation at 10000 rpm for 10 minutes to 

remove cell debris and denatured protein. The lysate was mixed with an equal volume of 

storage buffer (50 mM Tris pH 8.0, 100 mM NaCl, 0.1 mM EDTA, 0.5 mM Dithiothreitol 

(DTT) and 1% triton X-100) containing 50% glycerol. Equal volume of storage buffer 

containing 75% glycerol was again added. The resulting solution contained Taq polymerase, 

which was aliquoted and stored at -20C.  

RESULTS 

 Efficiency of the purified Taq polymerase (in-house) was verified by performing a 

PCR reaction and analyzing the PCR products on a 1% agarose gel electrophoresis. Serial 

dilution of the enzyme was used to establish an optimum volume of in-house Taq polymerase 

to be used for future PCR reactions. The in-house Taq was also compared with the 

Figure 1. Gel electrophoresis of PCR products  

Lane 1: Marker (ladder) lane 

Lane 2-5: Higher to lower amounts of commercial Taq 

Lane 6: Control (no Taq used in the PCR ) 

Lane 7-10: Higher to lower amounts of in-house Taq 
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commercially available Taq to estimate the amount of in-house Taq that will be needed for 

conducting PCR reactions successfully in future. Figure above is an agarose gel 

electrophoresis image showing the DNA fragments amplified by PCR using commercial Taq 

(Takara, WI) and in-house Taq.  
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 APPENDIX III: Synthesis of double stranded RNA 

 

Deepak Dibya and Emily A. Smith 

 

INTRODUCTION 

 Double stranded RNA (dsRNA) was synthesized using the DNA sequences that 

correspond to the proteins targeted in Chapter 2. In brief, DNA sequences from S2 genomic 

DNA were amplified using polymerase chain reaction (PCR). The DNA amplicons were 

used as templates for single-stranded RNA (ssRNA) syntheses using MEGASCRIPT T7 

Transcription Kit (Ambion, Austin, TX). ssRNA was purified by ethanol-precipitation, 

followed by the formation of dsRNA. The concentration of ssRNA was measured using UV-

Vis spectrophotometry. The dsRNA products were also analyzed with 1% agarose gel 

electrophoresis. 

 The enzyme that catalyzes the formation of ssRNA in the 5'→ 3' direction is called 

T7 RNA polymerase. T7 RNA polymerase is extremely promoter-specific and only 

transcribes DNA cloned downstream of a T7 promoter region. The source of the enzyme is 

the T7 bacteriophage, a virus that infects only bacteria, and has been found to have a very 

low error rate. The molecular weight of this enzyme is 99kDa. In biotechnology applications, 

T7 RNA polymerase is commonly used to transcribe a DNA template into a ssRNA. The T7 
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promoter sequence used in all the primers herein is TAATACGACTCACTATAGGG. This 

T7 sequence was prefaced to every RNAi probe (forward and reverse primer sequence) that 

was used to target cytoplasmic proteins. Details of the RNAi probes used in synthesizing 

dsRNA are given in Table 1. 

Table 1. RNAi probes. The letters F an R in the parentheses denote forward and reverse 

primers respectively. 

Protein Probe ID Probe Length Primer Sequence 

Rhea (F) 
HFA11300 507 

CGCCGATCCAGGTCAAC 

Rhea (R) ATCATTTGCGGCTTAGTAGA 

FAK (F) 
BKN21731 529 

TGATTGAACCTTGCACCAAA 

FAK (R) AACCAGGTCGACAAACGAAC 

Paxillin (F) 
BKN29242 313 

TGTGGGATTGGGTCGTAAAT 

Paxillin (R) CCTTCTTTGATCACGAGGG 

Vinculin (F) 
HFA18728 513 

CTTCAGCACCCGGAAATC 

Vinculin (R) GCGACCAGCGCTGATAA 

Dreadlock (F) 
HFA00812 440 

TGTACAGCTTCACGTCAAACAA 

Dreadlock (R) AGTCTCACTGTCTCTGATGAG 

Integrin linked kinase (F) 
HFA11868 489 

GGTAAACGAGCATGGAAACAC 

Integrin linked kinase(R) GAATTGCATGCTCCAATAATA 

Steamer Duck (F) 
HFA17070 269 

CTTCCAGGATGGGATATTC 

Steamer Duck (R) CATAGCGGCCGGTAATCT 

 

Further details of the RNAi probes such as efficiency and other target values are published 

elsewhere and can be obtained from the online resources: http://flyrnai.org 

 

http://flyrnai.org/
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DNA amplicons 

 The genomic DNA extracted from S2 cells was used in a PCR along with the RNAi 

probes to amplify DNA sequences that correspond to the target cytoplasmic proteins. These 

DNA amplicons were later used as templates for the synthesis of ssRNA. The optimal 

concentration of genomic DNA used in PCR has been determined earlier. The DNA 

amplicons were stored at -20 C for future use. The PCR conditions used for amplifying the 

DNA sequences are given in Table 2. These conditions have been optimized previously, by 

me, to yield optimum amplicons.  

Table 2. PCR conditions for amplifying DNA sequences corresponding to Rhea 

Stages Steps Temperature C Time (sec) Number of 

Cycles 

Stage 1 
1 94 240 

1 
2 0 0 

Stage 2 

1 94 30 

5 
2 51 05 

3 72 30 

4 0 0 

Stage 3 

1 94 30 

30 
2 65 05 

3 72 30 

4 0 0 

Stage 4 
1 72 180 

1 
2 0 0 
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Concentration of DNA amplicons were estimated on a 1% agarose gel, using the intensity at 

500bp of the ladder sequences. This concentration was used to estimate the amount of 

amplicon to be used in the subsequent step of ssRNA synthesis. 

 

ssRNA synthesis 

 Enzyme mixture and the DNA amplicons were thawed on ice. 10X buffer provided in 

the kit was thawed at room temperature. The four nucleotides were thawed at room 

temperature and then put on ice. Table 3 shows the reaction mixture for synthesizing ssRNA 

for a cytoplasmic protein. The strategies described here were used in synthesizing ssRNA of 

all the seven cytoplasmic proteins targeted, as described in chapter 2. In Table 3, the contents 

in a 1.7 mL centrifuge tube were mixed by vortexing and combined in the order from top to 

bottom. Total volume of the reaction was kept at 20 µL. 

Table 3. The reaction mixture for the synthesis of ssRNA. Master mix is the solution 

obtained by mixing equal amount of each of the nucleotides (U,A,G,C). 

 

Reaction 

Components 

Cytoplasmic 

Proteins 

Control 

Nucleotides 

(from master mix) 

8 µL 8 µL 

10 X buffer 2 µL 2 µL 

DNA amplicon 8 µL - 

Enzyme (Ambion) 2 µL 2 µL 

water - 8 µL 

Total Volume 20 µL 20 µL 
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 The reaction mixture was incubated in a dry bath (should contain water) at 37 C for 

6 hours to overnight. After incubation, the solution volume was brought to 300µL by adding 

240 µL of sterile water and 40 µL of 3.0 M sodium acetate (pH 5.2). Then 700µL of 200 

proof ethanol was added. The contents were mixed and the tubes were kept in the freezer for 

at least 30 min and then centrifuged at the maximum speed (15,000 rpm) for 15 minutes at 4 

C. The supernatant was removed by decanting, followed by addition of 1 mL of 70% ice-

cold ethanol. Again, the tubes were centrifuged at maximum speed for 15 min at 4 C and the 

supernatant was removed. The resulting ssRNA pellet was resuspended in 50 µL of sterile 

water. At this time, the ssRNA is very susceptible to degradation; therefore the next steps 

should be done in quick succession. 

 For the UV-Vis measurement, 2.0 µL of the above ethanol precipitated ssRNA was 

diluted by adding 2.0 µL of the ssRNA to 348 µL of sterile water. Prior to the UV-Vis 

absorbance measurements, dsRNA was generated from the ssRNA by incubating the 

remaining ssRNA solution (48 µL) in the dry bath at 65°C for 30 min. After 30 min the metal 

holder containing the dsRNA centrifuge tube was taken out and allowed to cool at room 

temperature. During 30 min of dsRNA formation, absorbance measurements at 280 nm were 

taken and the concentration of the ssRNA was obtained. dsRNA solution was then diluted 

with sterile water to a final concentration of 1.0 µg/µL. This solution was analyzed on a 1% 

agarose gel to ensure that the dsRNA contained the desired number of base pairs. The 

dsRNA solution was stored at -20°C for future use. 
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